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Abstract
Automatic Pronunciation Assessment (APA) is vital for

computer-assisted language learning. Prior methods rely on an-
notated speech-text data to train Automatic Speech Recognition
(ASR) models or speech-score data to train regression models.
In this work, we propose a novel zero-shot APA method based
on the pre-trained acoustic model, HuBERT. Our method in-
volves encoding speech input and corrupting them via a mask-
ing module. We then employ the Transformer encoder and ap-
ply k-means clustering to obtain token sequences. Finally, a
scoring module is designed to measure the number of wrongly
recovered tokens. Experimental results on speechocean762
demonstrate that the proposed method achieves comparable per-
formance to supervised regression baselines and outperforms
non-regression baselines in terms of Pearson Correlation Coef-
ficient (PCC). Additionally, we analyze how masking strategies
affect the performance of APA.
Index Terms: automatic pronunciation assessment, zero-shot
learning, self-supervised learning, HuBERT

1. Introduction
Learning a second language (L2) is a common requirement in
bilingual or multilingual communities. However, L2 learners
often struggle with achieving good proficiency in pronuncia-
tion. Computer-assisted pronunciation training (CAPT) is a no-
table application that enables language learners to effectively
learn the pronunciation of new languages [1, 2]. CAPT provides
feedback containing evaluation results, which can be automati-
cally generated based on pronunciation, facilitating L2 learners
in adjusting their pronunciation for improvement. Therefore,
providing an overall assessment of pronunciation automatically
is one of the primary objectives of CAPT.

Automatic pronunciation assessment has been extensively
investigated over a prolonged period. Existing pronunciation
assessment methods are implemented in the supervised setting.
These approaches involve the usage of collected speech data
with text annotations for training ASR models. Then the eval-
uation can be conducted based on the recognition results of
ASR models. Goodness of Pronunciation (GoP) is one of the
most commonly used metrics, aiming to provide phoneme-level
scores for a given utterance. GoP requires calculating the log-
posterior probability for each reference phoneme based on the
contextual information [3, 4, 5]. On the other hand, there is an
alternative research line that involves using speech data from
non-native speakers with pronunciation scores annotated by do-
main experts to train regression models. Various features of
speech data have been explored in this line, one of which is the
phone-level features of speech [6, 7]. To enhance regression
performance, [8] propose to use deep features transferred from

the acoustic models of ASR. Using speech representations of
pre-trained acoustic models such as wav2vec 2.0 or HuBERT
also contributes to improving the regression performance by
fine-tuning [9, 10]. Furthermore, multi-aspect pronunciation
assessment at multiple granularities [11, 12] has been explored
with multi-task supervised learning. However, there is a lack
of unsupervised assessment approaches in the literature. All
current pronunciation assessment methods require supervised
signals to obtain the evaluation results.

Resource-efficient methods have been widely investigated
for the low-resource scenario in the speech community [13, 14].
Nevertheless, it remains challenging to evaluate the quality of
pronunciation using few or no data samples. Recent advances
in Self-Supervised Learning (SSL) pre-trained language mod-
els (PLMs) have demonstrated strong few-shot and zero-shot
learning abilities in the natural language processing commu-
nity [15, 16] due to the knowledge acquired during the pre-
training stage. PLMs are capable of performing downstream
tasks via appropriate prompting with limited or even no data
samples. However, the zero-shot ability has not been fully ex-
plored for SSL pre-trained acoustic models. This is because
they learn at the acoustic level and it is challenging to learn
linguistic representations from raw audio [17, 18], making it
difficult to adapt them to downstream tasks without fine-tuning.
While fine-tuning SSL pre-trained acoustic models with super-
vised data has been shown to be effective in automatic pronun-
ciation assessment [9, 10], zero-shot pronunciation assessment
has yet to be explored. Nevertheless, the acoustic-level knowl-
edge acquired by SSL pre-trained acoustic models presents a
viable option for zero-shot pronunciation assessment based on
the unlabelled speech data observed during pre-training.

In this work, we propose a zero-shot pronunciation assess-
ment approach that requires no annotated speech data. This
is achieved by leveraging the SSL pre-trained acoustic model,
HuBERT [19], for conducting the masked token prediction
task. Our method involves encoding the waveform speech in-
put into frame sequences and transforming them into corrupted
sequences via a masking module. We then employ the Trans-
former Encoder of HuBERT and apply k-means clustering to
obtain tokens of frame sequences and recovered tokens of cor-
rupted sequences. Finally, a scoring module is designed to
evaluate the pronunciation of a given speech by measuring the
number of wrongly recovered tokens. Our proposed method is
unsupervised and requires no fine-tuning. We conduct exper-
iments on the speechocean762 dataset [7]. The experimental
results demonstrate that the proposed method achieves compa-
rable performance compared to supervised baselines and out-
performs non-regression baselines in terms of the Pearson Cor-
relation Coefficient.
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Figure 1: Overview of the zero-shot automatic pronunciation assessment.

2. Method
2.1. Overview

An overview of our proposed method is shown in Figure 1. We
developed three main steps to achieve this assessment as shown
in Figure 1. The first step is to input the waveform speech au-
dio to the convolutional neural network (CNN) encoder to get
a frame sequence. The Transformer encoder takes as input the
frame sequence and the k-means clustering is utilized to obtain
the token sequences. The second step is to apply a mask mod-
ule on the frame sequence gained in Step 1 and input the masked
sequence to the Transformer encoder followed by the k-means
clustering to obtain the recovered tokens of masked spans. Fi-
nally, a scoring module is employed to measure the number of
wrongly recovered tokens based on the outputs of Step 1 and
Step 2. The intuition behind this is that for well-pronounced
speech, recovered tokens would be similar to tokens of corre-
sponding positions obtained from uncorrupted input. On the
contrary, for mispronunciation speech, recovered tokens would
differ from their counterparts a lot.

2.2. HuBERT Module

The HuBERT Module is adapted from the original HuBERT ar-
chitecture [19]. This module consists of one CNN encoder, one
Transformer encoder, one k-means clustering, and one mask-
ing module. Let X = {x1, ..., xT } denote the output of the
CNN encoder with T frames. Then the Transformer encoder is
employed to get latent representations of X that are further uti-
lized to obtain the token sequences Z = {z1, ..., zT } through
k-means clustering, where zt ∈ [C] is a C-class categorical
variable and t ∈ [T ]. zt is also known as the hidden acoustic
unit.

2.3. Masking Module

To construct the masked token prediction task, we employ a
masking strategy r on X . If the set of indices to be masked is
denoted by M ⊂ [T ] for a sequence X with T frames, then
the corrupted version is denoted by X∗ = r(X,M), where

xm is replaced by a mask embedding x∗ for m ∈ M . Then we
feed X∗ into the same Transformer encoder and use the same k-
means clustering. As a consequence, the output token sequence
of masked spans is denoted by Z∗ = {zm|m ∈ M}.

Masking strategy is of great importance in the proposed
method. Basically, we aim to mask mispronounced segments
and expect the SSL pre-trained acoustic model can recover
them with correctly pronounced tokens. However, whether the
speech is mispronounced and where the mispronunciation oc-
curs are unknown due to our unsupervised setting. To address
this issue, we propose two strategies that are used to mask out
the mispronunciation segments.

2.3.1. Random Masking

Random masking is a direct approach that is based on the mask-
ing strategy employed in pre-training. However, a single in-
stance of random masking may have a lower probability of cov-
ering the mispronunciation component. To address this con-
cern, we propose to repeat random masking k times for a given
sequence X . Specifically, we randomly select p% of the frames
in X as starting indices, and subsequently mask spans of l for
each start index. These spans are mutually exclusive, with no
overlap between them. By increasing the value of k, it is possi-
ble to ensure that each frame is masked at least once.

2.3.2. Regular Masking

Regular masking is an alternative approach that masks frames
in a rule-based way. This strategy involves segmenting the input
into k slices of equal length. We then proceed to mask one of
those segments at a time and perform inference. The process
is repeated until every segment has been masked at least once.
The number k of segmented slices determines the granularity of
the segmentation.

2.4. Scoring Module

In order to assess the quality of speech pronunciation, we intro-
duce the scoring module, which measures the number of incor-



rectly recovered tokens based on Z and Z∗. Specifically, the
average Mis-Recovered Token (aMRT) is proposed as a metric
to measure the performance of pronunciation. Formally,

aMRT =
1

k

k∑
j=1

∑
i∈Mj

δ(zi, z
∗
i )

where Mj ⊂ [T ] represents the j-th set of indices to be masked,
and function δ is defined as:

δ(z, z∗) =

{
0, z = z∗

1, z ̸= z∗

A higher aMRT value corresponds to a greater number of
mis-recovered tokens and thus a lower quality of pronunciation.
To obtain the PCC results between our proposed metrics and
ground-truth scores, we adopt the negative values of aMRT as
our final metrics.

3. Experiments
3.1. Dataset

We conduct experiments on the dataset speechocean762 [7],
which is specifically designed for pronunciation assessment.
This open-source speech corpus is composed of 5,000 En-
glish utterances collected from 250 non-native speakers, half of
whom are children. The corpus provides rich label information
including phoneme, word, and sentence levels, and includes as-
sessment scores ranging from 0 to 10 annotated by five experts.
Our proposed approach is evaluated at the sentence level on the
test set, which contains 2,500 utterances. We choose this public
dataset for easy reproduction and comparison.

3.2. Baseline Models

We compare our proposed method with regression-based and
non-regression-based baselines. The regression-based baselines
include GoP [3, 20], DeepFeature1 [8], and the state-of-the-art
GOPT [12], all of which are supervised with human-annotated
pronunciation scores. The non-regression-based baseline, on
the other hand, utilizes the average phoneme-level GoP over the
entire sentence as the measurement, and is referred to as non-
reg GoP. This method does not require score annotations but
instead uses a supervised ASR model.

3.3. Experimental Setup

We utilize the HuBERT-Base2 model and adopt the CNN en-
coder, Transformer encoder, and k-means clustering in the ex-
periments. HuBERT-Base is pre-trained on the LibriSpeech-
960 [21], and the k-means with 100 clusters is fitted on Lib-
riSpeech train-clean-100 split as per [22] using intermediate
representations from HuBERT-Base. The output of the 7th layer
of the Transformer Encoder is chosen as the default feature
for clustering, as the resulting acoustic units perform well in
discrimination tests [19, 17, 23]. We set masking probability
p = 20%, masking length l = 5, and repeating times k = 50 as
the default. Each experiment is repeated three times with three
different random seeds {13, 21, 100}, and the mean and stan-
dard deviation of the results are reported. Prior to performing
the inference steps, all input audios are resampled with 16000 as

1DeepFuture refers to the methods in [8] using deep features of ASR
acoustic model

2https://github.com/pytorch/fairseq

the sample rate. The non-reg GoP is computed using Kaldi [24]
to obtain the average phoneme-level GoP of the entire sentence.
The ASR model utilized in this calculation is Librispeech ASR
Chain Model3, as per [12].

3.4. Main Results

Two comparative studies are conducted to assess the effective-
ness of the proposed method. The first study involves PCC
performance comparison between our proposed method with
regression-based and non-regression-based baselines, while the
second study compares the PCC performance of different mask-
ing strategies.

The performances of various regression-based baselines
and non-regression-based baselines are presented in Table 1.
The results indicate that, compared to regression-based base-
lines, the proposed method lags behind the basic supervised
baseline by a small margin of 0.04 PCC, despite a large per-
formance gap of 0.14 PCC with the state-of-the-art supervised
baseline. Notably, the proposed method is achieved by lever-
aging only the acoustic knowledge of HuBERT-Based acquired
during pretraining, without the usage of annotated scores.

Furthermore, in comparison with the non-regression-based
baseline, our proposed method shows a performance improve-
ment of 0.03 PCC over the non-reg GoP. It is noteworthy that
non-reg GoP requires an ASR model, while our method does
not, underscoring the effectiveness of our ASR-free approach.

Table 1: Comparison between our method with regression-
based and non-regression-based baselines on speechocean762

Model PCC
Regression based

GoP [3] 0.64
GoP(2BLSTM+MLP) [20] 0.67

DeepFeature [6] 0.72
GOPT [12] 0.74

Non-regression based
non-reg GoP 0.57

Ours 0.60

Table 2 presents the performance comparison of two mask-
ing strategies employed in this study. The results show that ran-
dom masking achieves superior performance with an improve-
ment of 0.014 PCC over regular masking. We conjecture that
this may be due to the fact that the input distribution with ran-
dom masking is closer to the input distribution during pretrain-
ing, leading to enhanced performance. In addition, the experi-
mental results reveal that random masking exhibits a low vari-
ance, indicating the stability of the method.

Table 2: Comparison of two masking strategies. The standard
derivation of Random Masking is reported.

Masking Strategy PCC
Random Masking 0.595± 0.002
Regular Masking 0.581

3https://kaldi-asr.org/models/m13
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Figure 2: Impact of (a) mask probability, (b) mask length, and (c) feature layer on PCC results

3.5. Impact of masking hyperparameters

3.5.1. Random Masking

In order to further examine the impact of various hyperparam-
eters of random masking, including masking probability, mask-
ing length, and feature layers used for clustering on the final
results, three additional experiments are carried out. The results
are presented in Figure 2.

The initial subfigure 2(a) illustrates the impact of mask
probability on PCC results, with mask probability ranging from
0.1 to 0.5 with an interval of 0.1. The mask length is set to 5,
and the feature layer is set to 7. The results indicate that the
mask probability of 0.3 yields the best performance, while both
higher and lower mask probabilities produce inferior outcomes.
This observation may be attributed to the fact that the high mask
probability may discard essential information that is required
for reconstruction, whereas the low mask probability may de-
crease the possibility of masking mispronunciation parts.

Subfigure 2(b) showcases how the length of each masked
span affects the PCC results. The mask length ranges from 2 to
10 with an interval of 2, while the mask probability is set to 0.2,
and the feature layer is set to 7. The curve of this figure suggests
a linear decrease in performance as the length increases. This
phenomenon may stem from the pre-trained HuBERT-Base’s
inadequate ability to recover a long masked span given the con-
text.

Apart from the aforementioned factors, this study also in-
vestigates the degree to which the features used for clustering
can contribute to pronunciation assessment. Therefore, the fea-
tures from various layers of the Transformer Encoder ranging
from 7 to 12 are examined. The outcomes presented in subfig-
ure 2(c) reveal that using features from the 9th layer results in
the best PCC performance. Generally, features from the 7th to
10th layer are considered useful for pronunciation assessment,
whereas deeper features lead to poorer performance.

3.5.2. Regular Masking

For regular masking, we mainly investigate the impact of the
slice number on the PCC results, namely how the mask granu-
larity affects the PCC results. The results are presented in Fig-
ure 3. Our finding suggests that the more refined granularity of
a single mask span does not necessarily lead to improved per-
formance. One potential explanation for this outcome is that the
use of a single mask span causes a shift from the input distribu-
tion, leading to poor performance. In addition, shorter masked
spans may fail to cover entire words or even phonemes, which
can have an adverse impact on the results.
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Figure 3: Impact of slice number on PCC results

4. Discussion
While our zero-shot method achieves results comparable to su-
pervised methods, it is essential to acknowledge that our method
differs from the canonical-text-based pronunciation assessment.
Our method draws on the acoustic knowledge obtained during
pre-training, and thus, even if the transcription is different from
the canonical text, a speech that is accurately pronounced may
still receive a high score. Moreover, our method is limited to
sentence-level assessment, and the exploration of unsupervised
pronunciation assessment at the phoneme and word levels will
be left as future work. The objective of this study is to establish
a baseline and provide a pilot study of unsupervised pronuncia-
tion assessment.

5. Conclusion
In this paper, we present a zero-shot automatic pronunciation
assessment approach. Instead of training regression models or
using ASR models to compute GoP, we directly utilize a SSL
pre-trained acoustic model and use the acoustic knowledge ac-
quired from pre-training. To perform the ASR-free pronuncia-
tion assessment, we design two masking strategies and a novel
evaluation metric to score the pronunciation of given speeches
at the sentence level. Experimental results on speechocean762
achieve comparable performance to the supervised regression-
based baseline and outperform the non-regression-based base-
line. In the future, we hope to extend this research line of unsu-
pervised pronunciation assessment to phoneme and word levels.
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