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Abstract

Music rearrangement is a common music prac-
tice of reconstructing and reconceptualizing a piece
using new composition or instrumentation styles,
which is also an important task of automatic mu-
sic generation. Existing studies typically model the
mapping from a source piece to a target piece via
supervised learning. In this paper, we tackle re-
arrangement problems via self-supervised learning,
in which the mapping styles can be regarded as con-
ditions and controlled in a flexible way. Specifi-
cally, we are inspired by the representation disen-
tanglement idea and propose Q&A, a query-based
algorithm for multi-track music rearrangement un-
der an encoder-decoder framework. Q&A learns
both a content representation from the mixture and
function (style) representations from each individ-
ual track, while the latter queries the former in or-
der to rearrange a new piece. Our current model fo-
cuses on popular music and provides a controllable
pathway to four scenarios: 1) re-instrumentation,
2) piano cover generation, 3) orchestration, and 4)
voice separation. Experiments show that our query
system achieves high-quality rearrangement results
with delicate multi-track structures, significantly
outperforming the baselines.

1 Introduction

It is sometimes easy to craft an idea of the melody but usually
hard to frame a good arrangement. Formally, arrangement
refers to the form of a musical piece, typically with textures
and voicing carefully designed for multiple instruments as a
unique style. On top of that, a piece can also be rearranged to
convey new feelings. Such rearrangement scenarios include
piano cover generation from multi-track music, multi-track
orchestration from piano, and re-instrumentation using varied
instruments, which are all common tasks in music practice.
While much progress has been witnessed in automatic mu-
sic generation [Huang et al., 2019; Huang and Yang, 2020;
Hsiao et al., 2021], rearrangement remains a challenging
problem. Among various ways to rearrange a piece, most

studies have focused on the reduction from complex forms to
simpler ones, such as generating piano covers from multi-
track music. The reduction is typically done by masking
least significant notes, either identified by rule-based crite-
ria [Nakamura and Yoshii, 2018] or learned by supervision
[Terao et al., 2022]. While rearrangement in this way is gen-
erally faithful, it tends to produce sparse or repetitive textures
that fall short of creativity. More recent works have also taken
on simple-to-complex rearrangement, such as orchestration
[Crestel and Esling, 2017; Dong et al., 2021]. While these
works are still fully supervised, the scarce of paired piano and
multi-track data remains a major problem in this direction.

Another considerable challenge for music rearrangement
lies in multi-track modelling. Previous works have typi-
cally interpreted “track” as “instrument” and merge individ-
ual tracks of the same instrument class to simplify the prob-
lem [Dong et al., 2018; Ren et al., 2020]. However, instru-
ment alone is not necessarily a good representative of a multi-
track system in symbolic music. For example, pop music
often has two guitar tracks of quite different functions — a
melodic one and a harmonic one. When merged together, the
distinctive texture structures of each track become less trans-
parent, which may add extra burden to the model.

In this paper, we aim to approach multi-track music rear-
rangement while balancing faithfulness with creativity. We
render the content of a source piece using the style from a
reference piece that is free to choose. In terms of the “style”
of a multi-track piece, apart from instruments, we believe the
function of each component track is also important. Specif-
ically, we consider the function of a track as its texture den-
sity distribution along the time- and pitch-axes, respectively,
which can describe both the distinctive intra-track structures
(e.g., melodic v.s. harmonic) and the inter-track dependen-
cies (e.g., pitch range and voicing). We use track functions as
queries in a query-based track separation process to recon-
struct individual tracks from a track-wise condensed mixture.
Under the VAE framework [Wang et al., 2020c], we devise
a pipeline consisting of four components: 1) an encoder that
maps a mixture to the latent space; 2) a query-net [Lee ef
al., 2019] that encodes function features of each track; 3) a
Transformer-based [Vaswani et al., 2017] query system that
separates each track from the mixture at the latent represen-
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Figure 1: Q&A is a unified framework for re-instrumentation, orchestration, piano cover generation, and voice separation.

tation level; and 4) a decoder that reconstructs each separated
track. At inference time, our model can query a piece and
rearrange it with diverse track functions.

We name our model after Q&A (Query & re-Arrange),
which provides a unified solution to a range of multi-track
music rearrangement tasks, including: 1) re-instrumentation
— to rearrange a multi-track piece with a new track system,;
2) piano cover generation — to rearrange a multi-track piece
into piano solo; and 3) orchestration — to rearrange a piano
piece with a variable types of instruments in a variable num-
ber of tracks. By inferring track functions as voice hints, our
model can additionally handle 4) voice separation — to sepa-
rate distinctive voicing tracks (assuming a preset total num-
ber of voices) from an ensemble mixture by generating each
track. Figure 1 shows the relations among the four tasks.

Our current model focuses on pop music rearrangement.
We also test our model’s voice separation performance on
string quartets and Bach chorales. Experimental results show
that our model not only generates high-quality arrangements,
but also maintains fine-grained symbolic track structures with
musically intuitive and playable textures for each track. In
summary, our contributions in this paper are as follows:

* A versatile rearrangement model: We present Q&A!,
the first unified framework for re-instrumentation, piano
cover generation, orchestration, and voice separation.
The rearrangement results demonstrate state-of-the-art
quality over existing models for similar purposes.

Function-aware multi-track music modelling: We de-
sign instrument-agnostic track functions for multi-track
modelling, which can better describe the distinctions of
parallel tracks and their dependencies. This method is
applicable to a wider range of music generation tasks.

Query-based representation learning: We introduce a
self-supervised query system separating parts from the
mixture at latent representation level. Experiments show
that our model learns style representations of each part
disentangled from the mixture content, demonstrating
interpretable and controllable generative modelling.

2 Related Work

2.1 Symbolic Music Rearrangement

Existing studies on music rearrangement commonly rely
on supervised learning to map a source piece to a target
one. For example, Crestel and Esling [2017] project piano
solo to orchestra by training a seq2seq model on a classi-
cal repertoire of paired data [Crestel er al., 2017]. Dong
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et al. [2021] approach automatic instrumentation by pre-
dicting the instrument attribute of each note in a track-wise
condensed mixture. Models for piano reduction can have
more rule-based designs [Nakamura and Sagayama, 2015;
Takamori et al., 2017], but are still generally under super-
vised frameworks. Except for several works that consider
difficulty level as condition [Nakamura and Yoshii, 2018;
Terao et al., 2022], most models cannot steer the rearrange-
ment process or change the composition style.

In this paper, instead of supervised mapping, we render
the content of a source piece using the style from a refer-
ence piece. In terms of content, we preserve the general
melodic and harmonic structures. As for style, we intro-
duce a new track system, i.e., textural functions of each track
along with the instruments to play them, to reconceptualize
the source piece. Our methodology can be formalized as
composition style transfer [Dai et al., 2018] while existing
research most relevant to us is [Hung et al., 2019], which ap-
proaches re-instrumentation by transferring instrument tim-
bres from different references. While Hung et al. [2019] still
require supervision from audio-symbolic pairs, our model
is fully symbolic-based, self-supervised, and unified for re-
instrumentation, piano cover generation, and orchestration.

2.2 Multi-Track Music Modelling

Multi-track music is an arrangement form commonly seen
in accompaniment, symphony, ensembles, efc. However,
it is very challenging for machines to understand multi-
track data. To capture inter-track dependency, mainstream
approaches either distribute vari-instrument tracks into par-
allel data channels [Dong et al., 2018; Zhu et al., 2018;
Hung et al., 2019] or incorporate instrument labels as part
of note event tokens [Donahue et al., 2019; Payne, 2019;
Ren et al., 2020]. Such methods are ideal for CNN-based and
language models, respectively, yet both inevitably merging
co-instrument tracks together. The event-based approach ad-
ditionally enforces a positional relation to parallel tracks that
are not sequentially ordered, which can damage the intrinsic
structure of multi-track music [Wang and Xia, 2021]. More
recently, several works target at these issues and support gen-
erating co-instrument tracks without a sequential assumption
[Ens and Pasquier, 2020; Liu et al., 2022]. However, these
models are not applicable to general music rearrangement.
In this work, apart from instrument, we introduce track
function as an equally (if not more) important feature to de-
scribe and distinguish individual tracks in multi-track music.
We define and use the function of a track to represent its tex-
ture and voicing structures. We further model multi-track mu-
sic via self-supervised learning, i.e., using each function to
query and separate corresponding tracks from a mixture.
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Figure 2: The architecture of Q&A consists of four key components: mixture encoder Enc™, function query-net with encoder Enc’ and

decoder Decf, track separator Sep, and track decoder Dectk

. Q&A learns both a content representation from the mixture and function

representations from each individual track, while the latter queries the former in order to rearrange a new piece.

3 Methodology

We propose Q&A, a query-based algorithm for multi-track
music rearrangement under an encoder-decoder framework.
An overview of our model is shown in Figure 2. In this sec-
tion, we first introduce our data representation of multi-track
music and track functions in Section 3.1. Then, we introduce
our model architecture and training objectives in Section 3.2
and 3.3. Finally, in Section 3.4, we elaborate on how Q&A
can be applied to music rearrangement at inference time.

3.1 Data Representation

Multi-Track Music

Given multi-track music x with N tracks, our model aims to
reconstruct each track x,, where n = 1,2,--- , N, from a
track-wise condensed mixture x,;x. We represent x,, in the
modified piano-roll format proposed by [Wang et al., 2020b],
and z as an N-track collection. Formally,

T =x1n = {2z 1Dy, (1

where individual track z,, is a P x T matrix. P = 128 rep-
resents 128 MIDI pitches, and 7' is the time dimension. Each
data entry (p,t) of x,, is an integer value representing note
duration on the onset positions. The condensed mixture iy
is also a P x T matrix where each entry is the position-wise
maximum value across N tracks. In this paper, we consider
2-bar (8-beat) music data segments in % time signature quan-

tized at i beat unit, deriving 7' = 32 time steps for each mu-
sic sample. We also focus on composition-level aspects while

disregarding performance-level dynamics like MIDI velocity.

Track Function

We define the function of each track x,, as its texture den-
sity features computed from the modified piano-roll format.
Specifically, we define descriptors of pitch function fP(-) and
time function f*(-) as follows:

fP(zn) = rowsum (1., >0y)/ T, 2
S (#n) = colsum(1y,, ~0y)/ P, 3)

where 1.y is the indicator function expressing individual
note onset entries as 1. rowsum(-) and colsum(-) each sums
up one dimension, resulting in a P-D and T-D vector, re-
spectively. fP(z,) is essentially a pitch histogram, which is
related to key, chord, and the pitch range of x.,. f*(x,,) indi-
cates voice densities of z,, and is related to rhythmic patterns
and grooves. Each vector is normalized to [0, 1].

3.2 Model Architecture

Figure 2 shows the overall architecture of our model consist-
ing of four key components: 1) a mixture encoder, 2) a func-
tion query-net, 3) a track separator, and 4) a track decoder.

Mixture Encoder

As zpix 18 a single-track polyphony, we use the encoder mod-
ule of PianoTree VAE [Wang er al., 2020c], the state-of-the-
art polyphonic representation learning model, to encode a
256-D mixture representation 2. . The PianoTree encoder
first converts xnix to a compact and ordered note event for-
mat, where each event contains pitch and duration attributes.
It then applies a pitch-wise bi-directional GRU to summa-
rize concurrent notes at time step ¢ to an intermediate rep-
resentation simu-note;. On top of simu_note;.p, it further
applies a time-wise GRU to encode the full mixture repre-
sentation z7, . The encoding process of PianoTree VAE re-
flects hierarchical musical understanding from note via chord
to grouping, which is interpretable and has proved beneficial
for a range of downstream generation tasks [Yi er al., 2022;
Wuerkaixi ef al., 2021; Zhao et al., 2022; Wang et al., 2022].

Function Query-Net

The function query-net consists of two VAEs that encode

128-D representations zp( 2) and zfl(w) for track functions

fP(xy,) and f*(z,), respectively. The pitch and time func-
tion encoders each consist of a 1-D convolutional layer with
kernel size 12 and 4, respectively. Both are followed by ReLU
activation [Nair and Hinton, 2010] and 1-D max-pooling with
kernel size 4 and stride 4. The decoders consist of two fully-
connected layers with ReLU activation in between.



It is noted that, with the encoder design, we leverage the
translation invariance property of convolution and the blurry
effect of pooling [Krizhevsky er al., 2017] to discourage the
separator from simply retrieving notes that are implied in the
track functions. By doing so, our model learns a general style
representation instead of the exact density values from the
track function. Similar method is also adopted in other VAE
architectures to realize disentanglement [Wang et al., 2020b].

Track Separator

The track separator is a 2-layer Transformer encoder with
8 attention heads, 0.1 dropout ratio, and GELU activation
[Hendrycks and Gimpel, 2016]. The hidden dimensions of
self-attention dp,oq4e) and feed-forward layers dg are 512 and
1024, respectively. The input to the separator is a sequence of
N +1 latent codes including mixture z7 ;. and track functions

zlf () where ) denotes the concatenation [zn( zfl(w)] as

a umﬁed track function representation. We also add learn-
able instrument embeddings to the corresponding tracks. It
is noted that Transformer is permutation-invariant to the in-
dex of track functions so that no sequential assumption is en-
forced. While the self-attention mechanism allows each track
function as query to attend to the mixture, it also encourages
queries to attend to each other for inter-track dependency. We
denote the output of the Transformer as z{.,;, which are the
expected latent representations for individual tracks x;. .

Track Decoder

We use the decoder module of PianoTree VAE to recon-
struct each track x,, from representation 2. The decoder
involves time- and pitch-wise uni-directional GRUs, which
mirror the structure of the encoder. To better distinguish par-
allel tracks, we additionally provide the decoder with an aux-
iliary time sequence of symbolic features, which are priorly
predicted from z. Specifically, we consider three auxiliary
features: pitch centre, voice intensity, and rhythm, which can
serve as strong hints to determine if one track has melodic,
harmonic, and static properties [Couturier et al., 2022a;
Couturier et al., 2022b]. Both pitch centre and voice inten-
sity are time sequences of scalar values, which indicate cen-
tre pitch curve and voice number progression of a track, both
normalized to [0, 1]. The rhythm feature is a time sequence
of onset probabilities, which represents the rhythmic pattern
in time. We use a uni-directional GRU to predict the sym-
bolic features from 2 and feed them to the corresponding
time steps of the time-wise GRU in the PianoTree Decoder.
Similar method is also applied for disentanglement and re-
construction in [Yang et al., 2019; Wang er al., 2022].

3.3 Training Objectives

The loss terms in our model include 1) reconstruction loss
for each track, track functions, and auxiliary symbolic fea-
tures, and 2) KL loss between all latent representations and
standard normal distribution. Our model is essentially a vari-
ational autoencoder since the loss function can be formalized
as the evidence lower bound (ELBO) of distribution p(x),
where x = x1.n is the multi-track music.

The posterior distribution of the VAE is defined as the
product of three modules including mixture encoder, query-

net encoder, and track separator:

N
(Z | $) - qd)l( Zmix | xmlx H (]¢2 | f(‘rn))
n=1
T 60 5 | 2t 21500, (4)
n=1
where ¢ := [¢1, P2, ¢3] denotes the parameters of the three
modules, and z := [2Z,., 27y, z{ (N)] In Equation (4), we

collectively express two types of track functions as f(x,,) for
conciseness. It is noted that both x,;; and f(z,,) are deter-
ministically transformed from 2 and hence are not explicitly
written in the left-hand side of Equation (4).

The reconstruction distribution is defined as the product
of three reconstruction terms of query-net decoder, symbolic
feature decoder, and track decoder:

1‘ ‘ Z) = H p91 xn | Zf(z) H p92 xn) | vai)
n=1

N
Hp93(xn | Z;{;)T‘(q"n))7 (5)
n=1

where 0 := [0, 02, 03] denotes the parameters of the three

decoders. r(x,) denotes the auxiliary symbolic features for
track z,,. The pp, term can be interpreted as a regularizer to
the overall output distribution pg(x | z).

Finally, the overall loss function is as follows:

L0, ¢;x) =

Egngy logpe(z | 2)
+6KL(Q¢(Z | :IZ) ” N(Ov 1))7 (6)

where (3 is a balancing parameter [Higgins ef al., 2017].

3.4 Style Transfer

At inference time, Q&A can rearrange a multi-track source
piece z = 1. using the track system (style) from a ref-
erence piece y = Y., wWhich can be freely selected. Let
Enc™, Encf, Sep, and Dec'® be the mixture encoder, func-
tion encoder, track separator, and track decoder, respectively,
the rearrangement process takes a pipeline as follows:

Zmix = Enc™ (Tmix),
21 = Enc'(f(ym)), m=1,2,--, M,
2 = Sep (0 W),
2 =Dec™ (%), m=1,2,--- , M, (7)

where 2’ = ., is the rearrangement result. 2’ inherits the
general harmonic structures from z, while also introducing
y’s track system with new textures, grooves, and track voicing
played by a different set of instruments.

In addition to manual selection, reference y can be auto-
matically searched from a database D. To guarantee faith-
ful and natural rearrangement results, we develop a simple
heuristic to sample y that is “matched” with x as follows:

Yy = argmax[cos(f(ymix), f(Tmix)) + - ey]v (3)
yeD



where cos(-, -) measures cosine similarity between the func-
tions (essentially, texture densities) of mixture ymix and Tmix,
€y ~ N (0, 1) is a noise term for balancing with generality,
and « is a balancing parameter. In cases when y and x are
very dissimilar, our model robustly follows z’s harmony and
y’s texture and voicing in a general sense of style transfer.

4 Experiments

4.1 Dataset

Our model is trained on Slakh2100 [Manilow et al., 2019] and
POP909 [Wang et al., 2020a] datasets. In specific, Slakh2100
contains 2K MIDI files of multi-track music, most of which
are in pop style. Instruments in Slakh2100 are categorized
into 34 classes (while co-instrument tracks are not merged)
and each piece contains at least one track of piano, guitar,
bass, and drum. In our experiment, we discard the drum track
because it does not follow the standard 128-pitch protocol
used in other tracks. POP909 is a dataset of 1K pop songs in
piano arrangement created by professional musicians. Each
piece consists of three piano tracks for vocal melody, lead
instrument melody, and piano accompaniment, respectively.
By jointly training our model on both datasets, our model can
rearrange multi-track music to piano and vice versa.

4.2 Training

For training Q&A, we use the official training split of
Slakh2100 while randomly splitting POP909 (at song level)
into training, validation, and test sets with a ratio of 8:1:1.
We further augment training data by transposing each piece to
all 12 keys. Our model comprises 19M learnable parameters
and is trained with a mini-batch of 64 2-bar segments for 30
epochs on an RTX A5000 GPU with 24GB memory. We use
Adam optimizer [Kingma and Ba, 2014] with a learning rate
from le-3 exponentially decayed to le-5. We apply teacher
forcing [Toomarian and Barhen, 1992] for the decoder GRUs
in PianoTree VAE with a rate from 0.8 to 0. For the parameter
B in Equation (6), we apply KL annealing following [Wang

et al., 2022] and set 8 increasing from 0 to 0.5 for zﬁ(m)
from O to 0.01 for the other two factors.

and

4.3 Rearrangement Showcase

An 8-bar rearrangement example (by processing every 2 bars
independently) is shown in Figure 3. In specific, this is an
orchestration example, where we use Q&A to rearrange a pi-
ano piece into multi-track music. The piano source x is from
POP909 while we sample reference y of the same length from
Slakh2100 following Equation (8) with a = 0.2. We add
f(@mel), the function of x’s melody track, to y’s track func-
tions as an additional query to guarantee the preservation of
the theme melody. Meanwhile, we conduct posterior sam-

pling over 2%, to encourage melody improvisation.

In this example, our model rearranges the piano piece into
11 tracks with coherent and delicate multi-track textures.
Among the 11 tracks, guitar and organ are each used twice
for melodic and harmonic purposes, respectively. Our model
preserves the original harmony quite faithfully. Particularly,
it captures the added chord notes in x (highlighted by red dot-

ted lines in Figure 3) and retains the tension from the original

piece. At the same time, it introduces new groove patterns,
bass lines, lead instrument melodies, and a theme melody
variation to reconceptualize the piece with more creativity.

4.4 Subjective Evaluation on Rearrangement

Based on composition style transfer, Q&A is a unified solu-
tion for a range of music rearrangement tasks. In this paper,
we focus on orchestration, piano cover generation, and re-
instrumentation. For evaluation, we introduce three existing
models as baselines for each of the three tasks as follows:

BL-Orch.: We introduce Arranger by [Dong et al., 2021]
as our baseline for the orchestration task. We select the
BiLSTM variant pre-trained on Lakh MIDI dataset [Raffel,
2016], which is a superset of Slakh2100 that we use. Orches-
tration by Arranger is a note-by-note mapping process, where
each note in the piano source is mapped to a multi-track target
by assigning instruments under a classification framework.

BL-Pno.: We introduce Poly-Dis by [Wang et al., 2020b]
as our baseline for the piano cover generation task. This
model is pre-trained on POP909 and is also based on style
transfer. Specifically, it can generate piano cover for a multi-
track source piece by reconceptualizing its chord progression
using the texture from a piano reference. In our case, we pro-
vide Poly-Dis with the same piano reference as our model
and extract the chord progression of the source music using
the algorithm in [Jiang et al., 2019].

BL-Relns.: We introduce the model by [Hung et al., 2019]
as our baseline for the re-instrumentation task. This model
rearranges a source piece using the synthesized audio tim-
bre feature from a reference piece as instrumentation style.
We train this model on Slakh2100 using both the MIDI and
the aligned audio that is synthesized using professional-level
sample-based virtual instruments [Manilow et al., 2019].

Besides the baselines, we also introduce three variants of
our model to analyze the impact of each key component.
Specifically, Q&A-T uses only time function as query to rear-
range a piece. Q&A-P, on the other hand, uses pitch function
only. The final variant Q&A w/o Ins. uses both functions but
is trained without instrument embedding.

Evaluation Details

We invite participants to subjectively evaluate the rearrange-
ment quality of all models through a double-blind online
survey. Our survey consists of 15 rearrangement sets, each
of which contains one original source piece followed by
five rearrangement samples (four by our model variants and
the rest by one of the baselines). Among the 15 sets,
there are 5 for piano cover generation, orchestration, and re-
instrumentation, respectively. The original piece x is an 8-bar
musical phrase randomly selected from the validation/test set
of either POP909 or Slakh2100 depending on the task. The
reference piece y is sampled from the other dataset following
Equation (8), where we set o = 0.2. For re-instrumentation,
both z and y are in Slakh2100 but from different splits (vali-
dation and test sets, respectively). We use the same y for each
model that requires a reference piece for style transfer.

In our survey, we request each participant to listen to 5
rearrangement sets and evaluate each sample. Both the set
order and the sample order in each set are randomized. The
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Figure 3: An orchestration example for song_283 from POP909 by our proposed Q&A model. The result has 11 tracks with varied
instruments. Annotations illustrate that the rearrangement is both faithful and creative with a delicate multi-track structure.

evaluation is based on a 5-point scale from 1 (very low) to 5
(very high) for four criteria as follows:

DOA: The degree of arrangement. A low DOA refers to
anote-by-note copy-paste from the original music, while
a high DOA means the music is appropriately restruc-
tured to fit the new track system and instruments.

Creativity: How creative the rearrangement is.

Naturalness: How likely a human arranger creates it.

Musicality: The overall musicality.

Overall Rearrangement Performance

A total of 26 participants (8 females and 18 males) with var-
ious musical backgrounds have completed our survey. We
first show the statistical results for overall rearrangement per-
formance disregarding the specific tasks. As shown in Fig-
ure 4, the height of each bar represents the mean rating value
and the error bar represents the standard error computed via
within-subject (repeated-measures) ANOVA [Scheffe, 1999].
Among our model variants, Q&A-T queries the mixture by

time function only, and Q&A w/o Ins. has no instrument
embedding. Both models essentially have fewer constraints
during training and hence can produce more diverse results,
which may explain the higher ratings on DOA and Creativity
for both models. However, such results can also be less natu-
ral or musical. On the other hand, Q&A-P uses pitch function
only and yields results inferior to other variants. This find-
ing shows that pitch function alone is not sufficient to cap-
ture track structures in multi-track music. Indeed, pop music
(at least in our datasets) is generally better characterized in
grooves than in chords, as the latter can often fit in a few off-
the-shelf template progressions. In terms of Naturalness and
Musicality, our standard Q&A model makes a better balance
and acquires significantly better results (p-value p < 0.01)
than all variants and the baselines ensemble.

Task-Specific Performance

We are also interested in our model’s performance on each
concrete rearrangement task. As shown in Figure 5, we show
our model’s task-specific ratings (top in four variants) on the
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Figure 4: Evaluation on overall rearrangement performance.

same set of criteria in comparison to corresponding baseline
models. We notice that BL-Orch. earns the highest rating for
Naturalness in the orchestration task, which is not surpris-
ing because it adopts a note-by-note mapping strategy that
virtually reproduces the original human-created music. Ac-
companied by this strategy is a lower degree of orchestration
(DOA) and Creativity. On the other hand, our model demon-
strates a more balanced and superior performance. It also
outperforms BL-Orch. in Musicality as it can introduce more
diversified instruments and properly rearrange the source mu-
sic with new texture and voicing. In particular, we report a
significantly better performance (p-values p < 0.05) of our
model in Musicality than all baselines in all three tasks.

4.5 Objective Evaluation on Voice Separation

One may wonder if the exceptional performance of our model
in creativity and musicality sacrifices the faithfulness to the
original music. To this end, we conduct an additional experi-
ment on the task of voice separation and compare our model
with note-by-note decision models — a BiLSTM and a Trans-
former encoder tailored for this task in [Dong et al., 2021].
Specifically, voice separation is a special case of orchestra-
tion, where we only aim to separate a mixture into individual
voicing tracks without any creative factor. Note that, in such
a case, note-by-note classification methods have a natural ad-
vantage over representation learning based methods because
the latter gives less importance to accurate control on low-
level tokens. Still, the faithfulness of our model can be vali-
dated if it can also tackle this problem.

In voice separation, since the goal is to separate individual
tracks, the ground-truth track functions cannot be the model
input. Hence we introduce a new variant Q&A-V, which ap-
plies an additional GRU decoder to infer function representa-

: f(@) : P
tions zy.,/ from mixture representation 2, , and then gen-

erate each track with inferred track functions. In our case,
N = 4 is preset and the inference process is conducted from
high voice to low voice autoregressively. We load the rest part
of the model with pre-trained parameters from standard Q &A
and fine-tune the whole model on string quartets in MusicNet
[Thickstun et al., 2017] and Bach chorales in Music21 [Cuth-
bert and Ariza, 2010], respectively. We process the data into
8-beat segments irrespective of time signature. At test time,
if a certain note in the mixture is not recalled by our model,
we look for its nearest-neighbour note that is generated and
assign its voice. If two note assignments form polyphonic

wa Ours-Orch.  wm Ours-Pno. == Ours-Relns.
eem BL-Orch.

w2 BL-Pno. = BL-Relns.

g

Figure 5: Evaluation on task-specific rearrangement performance.

Model Chorales Quartets
Q&A-V 94.841 73.47%
Transformer 96.81 58.86
BILSTM 97.13 74.38
Q&A-V (+ entry hints) 95.11% 78.71F
Transformer (+ entry hints) 93.81 56.72
BiLSTM (+ entry hints) 97.39 71.51

Table 1: Objective evaluation on voice separation comparing to
note-by-note architectures. We use ' to denote test results under 10-
fold cross validation. Baseline results are from [Dong et al., 2021].

voice, we then re-assign the note with least added distance
to its second-nearest voice, which is a simple greedy-based
rule. As both datasets are tiny and prone to unbalanced train-
test split, we evaluate our model by 10-fold cross validation.

We show the test results (percentage accuracy) in Table 1.
Compared to the baselines, our Q&A-V model yields gener-
ally comparable results, although with a noticeable gap on
Bach chorales. Specifically, Bach chorales come with very
regular and transparent counterpoints, which are a good fit
for note-by-note classification frameworks to separate voices.
On the other hand, string quartets have much more complex
and even overlapped voices that are harder to separate. For
this case, our model yields highly competitive performance in
general. When entry hints are provided, our model achieves
the best with a good margin to both baselines.

5 Conclusion

In conclusion, we contribute Q&A, a novel query-based
framework for multi-track music rearrangement. The main
novelty lies first in our application of a style transfer method-
ology to interpret the general rearrangement problem. By
defining and utilizing track functions, we effectively capture
the texture and voicing structure of multi-track music as com-
position style. Under a self-supervised query system, the
number of tracks and instruments to rearrange a piece is virtu-
ally unconstrained. Q&A serves as a unified solution for pi-
ano cover generation, orchestration, re-instrumentation, and
voice separation. Extensive experiments prove that it can both
creatively rearrange a piece and faithfully conserve the essen-
tial structures. We believe that our contributions will inspire
further advancements in computer music research, opening
doors to broader possibilities for universal music co-creation.
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