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ABSTRACT

Automatic music generation (AMG) has been an emerging research
topic in Al in recent years. However, generating user-preferred
music remains an unsolved problem. To address this challenge, we
propose a hierarchical convolutional recurrent neural network with
self-attention (CRNN-SA) to extract user music preference (UMP)
and map it into an embedding space where the common UMPs are
in the center and uncommon UMPs are scattered towards the edge.
We then propose an explainable music distance measure as a bridge
between the UMP and AMG; this measure computes the distance
between a seed song and the user’s UMP. That distance is then
employed to adjust the AMG’s parameters which control the music
generation process in an iterative manner, so that the generated
song will be closer to the user’s UMP in every iteration. Experiments
demonstrate that the proposed UMP embedding model successfully
captures individual UMPs and that our proposed system is capable
of generating user-preferred songs.
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1 INTRODUCTION

Automatic music generation (AMG) has been an emerging research
topic in Al in recent years. However, current AMG models mainly
cope with musicality. Generating music that matches user music
preference (UMP) remains an unsolved problem due to the follow-
ing challenges: 1) The underlying principles that form user music
preference are still unclear [48]. 2) It is hard to find suitable features
and representations for UMP modeling. 3) It is difficult for users to
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Figure 1: Workflow of the UMP Extraction and Personalized
Music Generation System. (a) Training Phases of the UMP
Embedding Model. (b) Process of Computing the Embedding
of an Input Seed Song. (c) Process of Personalized Music
Generation.

describe UMPs, especially for non-specialists without music knowl-
edge. 4) Incorporating UMP as meaningful rules or conditions for
AMG can be tricky.

To address these challenges, we make the first attempt to utilize
and employ user modeling, the core technique that has been studied
in many recommender systems. This technique allows us to extract
UMP from user feedback and employ the extracted UMP to control
AMG in an interpretable manner.

As shown in Figure 1, we first propose a hierarchical convolu-
tional recurrent neural network with a self-attention (CRNN-SA)
based UMP embedding model, which extracts multifaceted audio
and musical features from a user’s listening histories. Through sub-
tly designed contrastive loss, the UMP embedding model manages
to scatter UMPs in the embedding space where the following dis-
tribution pattern is observed: popular preferences anchor in the
space’s center like a planet and unique music tastes surround them
like satellites. Next, we raise an explainable embedding distance
model, which serves as the bridge linking UMP and AMG. The
model compares an input song to a user’s UMP and yields a dis-
tance value, which guides how to generate a song that approaches
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the user’s preference. Finally, with the help of a controllable music
generator that takes in a seed song and four controlling parameters
to generate a new song [8], we convert the distance value to the
four parameters and generate a new song that’s closer to the UMP
than the seed song.

We conduct both objective and subjective experiments, and the
results show that our proposed system successfully embedded di-
verse UMPs and effectively generated songs that users like better
than the input songs. Therefore, our proposed UMP-aware AMG
system is expected to improve the quality of music-related services,
enhancing user experience and user stickiness.

The main contributions of this work are three-folded:

o To the best of our knowledge, we make the first attempt to
capture UMPs with an innovative CRNN-SA model using
contrastive learning to differentiate between common and
unique music preferences.

e We raise an embedding distance model which computes the
cross-modal distance between a user’s UMP and a seed song
based on four musical characters. The model successfully
functions as the intermedium between UMP and personal-
ized AMG.

e We incorporate the computed distance into a controllable
AMG model with a style transfer technique to update the
four music distance parameters, which in turn creates a new
song closer to the UMP.

The remainder of the paper is organized as follows. We first review
relevant work in Section 2. We then present the methodology of
the work in Section 3, detailing the designs of the proposed UMP
model, the contrastive loss function, the embedding distance model,
and the personalized AMG model. Next, we introduce the objective
and subjective experiments in Sections 4 and 5. Finally, we discuss
and conclude the paper in Sections 6 and 7 respectively.

2 RELATED WORK
2.1 User Preference Modeling

Learning users’ preferences and personalizing users’ experiences
are important factors in increasing user satisfaction [49]. User pref-
erence modeling has been studied in many fields such as music,
fashion, and e-commerce for item recommendation [6, 7, 29, 40, 60].
People’s preferences in these fields, however, change over time at
different rates. Music preference is one of the most stable, formed
as early as adolescence with little fluctuation afterwards [31]. Thus,
related work in music preference modeling rarely emphasizes vari-
ations in the temporal dimension. In music recommender systems,
studies attempt to learn users’ preferences by jointly learning mu-
sic features and users’ personal information such as cultural back-
ground [60] or listening behaviors such as frequency or recency
[29] and then predict the likability of an input music genre. Com-
mon techniques include collaborative filtering (CF) [24], content-
based filtering (CBF) [41], and hybrid solutions, which integrate
the former two by applying collaborative filtering on learned con-
tent features [44]. Various deep learning architectures, including
CNN s [19, 44, 55], RNNs [22], Deep Belief Networks (DBNs) [58],
and GANSs [9, 15], have also been used to extract UMP from the
user-item interaction matrix. The correlation of UMP with other
characteristics, such as emotions and personalities, have also been
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studied [38]. UMPs are usually modeled as the aggregation of all
their preferred artists and songs or as the major group of samples
after clustering operations [13, 47].

In contrast, user preferences in visual arts such as fashion ex-
perience periodic changes as influenced by social trends. There
are studies applying the LSTM-encoder-decoder-framework-based
Knowledge Enhanced Recurrent Network (KERN) to embed users’
age, gender, and location information obtained from social media
posts, then learn their sequential interaction with fashion elements
and ultimately predict the coming fashion trend [33, 34].

User preferences in online shopping change more frequently. To
adapt to this high intensity of preference change, existing work in
e-commerce recommendations and advertisements employs rein-
forcement learning (RL) with deep Q-Network (DQN) and neural
interactive collaborative filtering (NICF) to update users’ shopping
preferences in real time based on their current feedback for the
recommended items. [61, 62].

Music preferences are less time dependent than preferences in
other fields and are thus possible to obtain from listening histories
[31]. Current studies on music preference are mostly for music
recommender systems, which are difficult to generalize to AMG.
Thus, we notice the significant research value of modeling and
incorporating UMP in AMG and other music-related tasks.

2.2 Music Generation

Existing AMG approaches can be categorized into several main
classes [5]: 1) Statistics-based methods like Markov chains, which
generate notes, chords, and high-level structures such as bars and
sections based on their previous frequency of appearance [3, 23, 37,
46, 50]. 2) Rule-based approaches, which adopt traditional music
theories or create new song writing rules, encode chords/notes as
grammar symbols and generate music based on rules and grammar
like natural language processing (NLP) tasks [25, 57]. Nevertheless,
1) and 2) both suffer from repetitive content as they are limited to
a certain corpus or rule set. 3) In Evolutionary computation meth-
ods, genetic algorithms start with an existing piece or a random
solution and iteratively approach results that meet the defined re-
quirements [2, 12, 32, 36, 45]. They are beneficial for improvisation
and composition but may still lack variety in styles and structures.
4) In Multi-agent systems, multiple agents with perception and ac-
tions (each of which may represent a personality or an emotion)
interact with each other to model musical behaviors [28]. An exam-
ple is the Belief-Desire-Intention Architecture, where two agents,
each targeting a different aspect of composition (i.e., theory and
style), interactively create harmonic pieces [42]. 5) More recently,
CNNss [53, 59], RNNs [14, 21, 35, 51], GANs [1, 11], and Trans-
formers [10, 20] have been frequently used in Deep learning-based
melody generations as they have commonly recognized advantages
in extracting patterns, handling long-dependencies, and imitating
realistic pieces, although their mechanisms and generated content
are less interpretable and controllable.

Unfortunately, none of these approaches can generate customized
music favored by a specific user because current models concentrate
on basic requirements like musicality rather than UMP. Therefore,
our work aims to fill this gap by applying a UMP embedding model
to AMG.
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Figure 2: The Architecture of the Hierarchical CRNN-SA
based UMP Embedding Model.

2.3 Limitations and Proposed Improvements

First, several works on music recommender systems randomly label
songs that do not appear in users’ listening histories as negative
samples, making an unwarranted assumption on how the user may
react to an unheard piece of music. The quantity of negative (i.e.,
unheard) samples surpassing positive samples can lead to some
models for likability prediction "cheating" by simply increasing the
probability of making "dislike" prediction. He et al. reported the
bias brought by sampling non-label histories as negative, proposing
popularity aware weighting as a potential strategy. As such, our
work [17]. As such, our work counterposes users’ listened songs
with "popular but unheard" ones to avoid such risky assumptions,
which also keeps the quantities of positive and negative samples
at the same level in training. Second, the overwhelmingly larger

amount of hit songs leads to neglect of the less popular ones [4, 30].

Our work takes care of both by modeling their relation through their
locations in the song embedding space. Third, most applications
that model user preference focus on specific tasks and are hard
to generalize to others. Our work, in contrast, provides a general
user preference embedding model which may apply to multiple
downstream tasks. Finally, while most AMG tasks mainly focus on
musicality, we seek to integrate UMP into the generation process
as well.

3 METHODOLOGY
3.1 Problem Formulation

This paper aims to model UMP and apply it to personalized AMG.

The problem can be formulated as follows. First, we seek to define
UMP py,: Given the listening records of the public, H (U), a specific
user u € U and his or her ratings of a group of songs H (u) = {s1: r1,
$2:72,., Sn: T} Where s; € Sandr; € Zt, our UMP embedding model
M specified by its trainable parameters 8 projects the songs to an
embedding space based on the ratings. The UMP is a representative
embedding vector p, € P aggregated from the song embeddings.

pu = Mg, H () |H(U)) (1)

MM °22, October 10-14, 2022, Lisboa, Portugal

Next, we seek to find a function D (s, p,,): Given any song s and a
user’s preference embedding p,, D (s, p,) computes and outputs
their distance regarding four musical characters. Afterwards, our
personalized AMG model G takes an old song s,1q4 and the distance
deduced by D. Then the AMG model updates four distance param-
eters (which represent a variant of s,jq) to control the generation of
a new song spew that is closer to the user’s preference embedding
vector in the embedding space, namely, spew = G (So1d> D (Solds Pu))-
The user’s rating (denoted as R) for the new song should be higher
than for the old one. Therefore, our objective in personalized AMG
is formulated as follows.

argénax R (u G (s, D(s, pu))) ()

3.2 UMP Embedding Model

We design a hierarchical UMP embedding model with one convolu-
tional recurrent neural network (CRNN) block at the bottom to learn
representative embeddings of musical features and one CRNN-SA
block piled on top to further condense the learned musical feature
embeddings to song embeddings. The model is optimized with a
contrastive learning loss which is subtly designed to differentiate
users’ distinct preferences. As illustrated in Figure 2, the model first
extracts musical features from songs’ elementary audio features
with the first CRNN block and then extracts song embeddings from
the combined features with the second CRNN-SA block. The song
embeddings represent the song’s UMP embedding vector. In the
resultant song embedding space, the contrastive loss makes songs’
embeddings closer to one another if they are liked by the same users
and farther away otherwise. Then the UMP can be represented as
the weighted aggregation of a user’s preferred songs’ embeddings.
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Figure 3: The Network Structure of the CRNN(-SA) Block.

As shown by Figure 3, we employ the same CRNN structure for
both parts of the hierarchical model - the musical feature extractor
and the UMP extractor while the latter has an extra Self-Attention
(-SA) module (Figure 2-b). The LSTM and CNN have 2 and 3 layers
respectively. The number of CNN kernels are 32, 64, and 64, with
the size of 3 X 3, stride 1 X 1, and a 2 X 2 sized AvgPool kernel.
The activation function is the tanh, and the dropout rate is 0.1. The
hidden dimension in the LSTM is 128. The input is the stacked
preliminary audio features f; € RIXT of size (1024 x 64), the
musical feature extractor outputs the musical features f, € RK of
a specified dimension 12, and the UMP output p, /ps € RX is the
embedding vector of a specified dimension 24. We train the model
with a train/valid/test ratio of 8:1:1, Adam [27] as the optimizer, a
batch size of 32/192, a learning rate of 1e-4/2e-4 for the musical
feature extractor and UMP extractor respectively.
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3.2.1 Audio and Musical Features Exaction. To concisely represent
songs and allow the UMP embedding model to learn UMP effec-
tively, we take the songs and extract audio features known to greatly
impact auditory perception. We utilize audio features rather than
symbolic representations because the number of available songs
in MIDI format annotated with listening histories is insufficient to
train an effective UMP model.

We retrieve basic audio features, including the Mel-Spectrogram,
Mel-frequency cepstral coefficients (MFCCs), and Chromatograms
(Chroma) from song clips of 30-60 seconds, with a window size of
2048, hop length of 1024, and sample rate of 22050Hz.

In addition, we also employ 12 high-level musical features pro-
vided by Spotify’s Web API !, which are found to be representative
and effective for describing music preference in previous works
[18, 39, 43]. We divide the 12 musical features into the following
four sub-groups and train in four independent trials. The first group,
{ danceability, energy, liveness, valence, loudness }, are subjec-
tive descriptions relevant to characteristics such as rhythm, beat,
speed, regularity, and stability. The second group, { speechness,
acousticness, instrumentalness }, are all related to human voice
detection. The last two groups, { tempo, time signature } and {
key, mode }, are objective and measurable music features.

For songs whose musical features are not directly available from
the Spotify Web AP, we predict the first two groups of features from
the basic audio features with the musical feature extraction model
(Figure 2-a). The final L1 losses are 0.086 and 0.070 respectively.
And we use Librosa’s API and Krumhansl-Schmuckler key-finding
algorithm [54] to retrieve the other two groups.

After computing the musical features of a song, we normalize
the feature values V to the scale of [0, 1] by min-max scaling to
avoid imbalances among scales of their values.

3.2.2 Hierarchical CRNN-SA Based UMP Embedding Model. After
training the musical feature extraction model (Figure 2-a), we create
a CRNN-SA block to further extract the song embedding (Figure
2-b). The CRNN-SA block takes both the audio features and the
extracted musical features to avoid possible information loss in
deep models, as inspired by residual networks [52]. The CRNN
and CRNN-SA blocks together form a hierarchical CRNN-SA UMP
embedding model to project songs to corresponding points in the
UMP embedding space.

Specifically, the CRNN-SA block is a self-attention-enhanced
version of CRNN structure [56], which seeks to highlight parts of
the output sequence of the LSTM that are more important. The
attention weights (denoted as a;) indicate the significance of the
output sequence items (denoted as h;) at each timestamp t, pro-
portional to its similarity (denoted as e;) to the last output in the
sequence (denoted as ht). The attention-weighted summation of
all h; is concatenated with h7 and fed to linear layers to get the
final output embedding p;.

ar =

exp(he - hr) i
T 5 ps =tanh(W( ) azhs +hr) +b) (3)
Zi:1 exp(h; - ht) =1

Because users have different focusing points when listening to
songs, their music preferences are likely to be strongly related to

Ihttps://developer.spotify.com/console/get-audio-features-track/
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specific parts of a piece. Therefore, with the self-attention layer,
the model can concentrate on these special parts and give more
accurate preference embeddings.

3.3 Training Procedures

To capture both public and individual music preferences, we op-
timize the hierarchical UMP embedding model with contrastive
learning in two phases, as shown in Figure 1-a. First, we pre-train
it with listening histories that record the number of times users
had heard each song. This allows us to project the public trends
and the other songs according to their interaction forces defined
under a contrastive loss. Second, we fine-tune an exclusive copy
of the model for each new user based on the user’s ratings of a
group of songs. As shown by Figure 1-b & c, if we apply the user’s
unique UMP embedding model to personalized AMG, the generated
songs can be rated again and added to the user’s training data, thus
iteratively improving the performance of the UMP model with a
cycle of "rate"-"refine"-"generate". The two phases of training are
further detailed in section 4 and 5 correspondingly.

3.4 Contrastive Loss Design

3.4.1 General Loss Terms of Preference. Aiming to optimize the
UMP embedding model so that users’ unique music tastes can be
captured and differentiated from each other and also the public
trends, we define three UMP-relevant attributes reflecting the re-
lationship between users and songs. They then fuse into the con-
trastive loss function, which defines the interaction forces among
songs’ and users’ embeddings in the UMP hyperspace.

Popularity. Popularity decides the probability that a song s lies in
the public trends. It can be expressed as the summation of all users’
attention degrees to the song, as shown by Formula (4) where the
attention is the number of times that user u has listened to song s,
denoted as 7 (u, s).

Pop(s) = > T (u,5) (4)

uelU

We set a threshold th to separate out a group of most popular
songs that have been played for more than thristeningTimes times to
represent the public trends.

IsPop(s) = Pop(s) > thListeningTimes (5)

Likability. Likability is a binary variable indicating whether a
user likes a song. It will be used in the contrastive loss as the label
of a sample song, determining whether the song belongs to the
positive or negative sample groups. When pre-training the UMP
model, the value is true if the song has been listened to by the user,
and false if the song belongs to the most popular songs (top 1024)
but has not been listened to by the user. During the fine-tuning
phase, the value is true if the user rates the song above his or her
average rating (denoted as R,) where R denotes the rating.

1, if7(u,s)>0
LikeP'(s,u) =40, if T (u,s) = 0 A IsPop(s) (6)

@, otherwise
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1 ifR(u,s) > Ry
Likelt(s, ) = 41 TR >Ru )
0 otherwise
Significance. Sig(u, s) describes to what degree the user favors
the song. It equals 7~ during pre-training and R during fine-tuning.

SigPt(u,s) = T (u,5); Siglt(u,5) = R(u, 5) (8)

The individual UMP embedding can now be defined as the average
of the song embeddings weighted by their significance to the user,
where p,, and ps denote the UMP and song embedding respectively.

pu= . Sig(us)ps )
seH(u)

Moreover, we note the generalizability of the presented functions,
and their applicability to other domains with slight modifications.
For example, in online shopping advertisements, the advertisers
may choose to link popularity to monthly sales, number of clicks,
or other factors, while likability refers to whether the item’s tags
fall within the buyer’s interests.

3.4.2 Contrastive Loss for UMP Embedding Model. Based on the
loss terms defined above, we design a contrastive loss function to
allow songs that the same user likes to attract each other in the
embedding space while pushing other songs away. As shown in
Formula (10), we use the cosine similarity of two songs’ embeddings
a and b to indicate their distance.

a-b XL ai % bi (
=
lalllell— [yn o2 X \ZL, b}

For computational convenience, we first apply Euclidean normal-
ization to scale the vectors to the unit length so that the similarity
can be computed directly as the vectors’ dot product.

During pre-training, samples of each batch are selected accord-
ing to the listening history of a specific user, with an equal number
of the following three types of songs: 1) n non-most-popular songs
liked by the current user, 2) n most popular songs that the user
does not like, and 3) n non-most-popular songs not liked by the
current user but liked by another user. We stack the UMP embed-
dings of these three groups of songs into three matrices, denoted
as Mat™, Mat7, and Mat;,, where the first group serves as positive
samples and the rest serve as negative samples (Figure 1-a). The
inclusion criteria of these three types of samples can be formulated
as the condition expression (11). We expect large distances between
Mat™ and the rest, but small distances within Mat* and Mat™ them-
selves. Therefore, the loss function can be defined as Formula (12).
Computationally, the three matrices are normalized and multiplied
pair-wise following Formula (10). The contrastive loss is defined as
the weighted summation of their similarities.

i # j A —IsPop(Mat™) A LikeP'(Mat™, u;)
AlsPop(Mat] ) A —~LikeP'(Mat;,u;)  (11)
A-IsPop(Mat;) A —LikeP'(Mat,, u;) A LikeP'(Mat,, u;)

Sim(a, b) = cos(a, b) = 10)

LP' = Sim(Mat*, Mat]) + Sim(Mat*, Mat; ) — Sim(Mat*, Mat*)
- Sim(Mat], Mat] ) + margin  (12)

where margin is a large number to ensure that the loss value is
positive at all times during optimization.

MM °22, October 10-14, 2022, Lisboa, Portugal

During fine-tuning, we sample from a user’ rated songs and use
the user’s average rating to split them into positive and negative
samples. The loss function can thus be defined as Formula (13).

£/t = Sim(Mat*, Mat™) + Sim(Mat ™, Mat ™) — Sim(Mat*, Mat™)

+ margin  (13)

3.5 Embedding Distance Model

We propose an embedding distance model to link up the UMP
embedding model and personalized AMG by computing the cross-
modal distance between a user’s UMP embedding and the input
seed song’s embedding. First, we raise the concept of music distance
hyperspace where any two songs can be regarded as a variant of
each other specified by four music distance parameters. Second,
the four distance parameters are appended to a song’s audio and
musical features in the UMP embedding model (Figure 2-c) so that
the output song embedding is influenced by the four parameters.
Hence, the computed distance between a user’s UMP embedding
and a seed song’s embedding can instruct the music generator and
adapt it to the UMP.

Music Distance Hyperspace. Following a controllable AMG frame-
work [8], we treat each existing song s; as a seed song. For any
seed song, we create a corresponding distance hyperspace that
originates from the song, with four music distance parameters as
the four axes. Each parameter describes the distance between the
seed song and one of its variants regarding one of four musical
characters including a (chord progression distance), f (melody’s
statistical distance), y (melodic rhythmic distance), and A (melody’s
contour distance). Then we can consider any other song as a variant
of the seed song which corresponds to a specific point in that seed
song’s hyperspace. Namely, any song can be denoted by a 5D vector
{seed song, a, B, y, AL

Free Composition
Subspace

1.0

A soueisid
SILIAYY JIPORKW
o
ee]

o o o ©
S N B O

< 1.00.0

Figure 4: The Music Distance Hyperspace. The origin point
represents the seed song. Each axis describes its distance to a
variant song regarding one musical character. Only 3 out of
4 axes are present for visualization purposes.

As illustrated in Figure 4, these four distance parameters are all
in the range of [0, 1]. The origin point represents the seed song
itself (i.e., a variant that is identical to the seed song), while points
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near the location [1, 1, 1, 1] represents songs (variants) with weak
or no relation to the seed song (i.e., free composition subspace).
Theoretically, a UMP embedding corresponds to a point in a seed
song’s music distance hyperspace because a UMP embedding is es-
sentially the aggregation of several song embeddings. For example,
if a user likes song s;, his or her UMP is likely to correspond to a
certain point that is close to the origin in the hyperspace of s;.

Embedding Distance Computing. Although there is not a for-
mulable mapping to convert a UMP to exact coordinates in the
hyperspace, we propose to quantitatively compare the difference
between a user’s UMP embedding with an input seed song’s embed-
ding and then output a distance value, which indicates how close
the seed song is to the UMP with respect to their cosine similarity.

To connect the UMP with the music distance hyperspace, we ap-
pend the four distance parameters {a, f, y, A} of an input song to its
concatenated audio/musical features in our proposed hierarchical
CRNN-SA model (Figure 2-c). Thus, the impacts of the four musical
characters on the UMP can be jointly learned through both original
songs (which have the parameters [0, 0, 0, 0]) and song variants
(which have the corresponding four distance parameters they are
generated from).

3.6 UMP-Aware Music Generation

As shown in Figure 4, we assume that any seed song has a "desir-
able subspace" in its hyperspace, which falls between the origin
and the corresponding point of the UMP (as the imaginary UMP
point in the figure). The points in the desirable subspace represent
certain special variants that 1) accord well with a user’s UMP, 2)
originate from the seed song, and 3) are sufficiently different from
the seed song to be claimed as a new piece. UMP-aware AMG is to
search for such a desirable subspace in a seed song’s hyperspace
according to the gradients of the four parameters deduced from the
distance value (as shown by the yellow arrow in Figure 4). There-
fore, personalized AMG is converted to sampling a point in the
desirable subspace corresponding to a variant that approaches the
UMP. We finally propose the strategy of how to deduce the updated
four distance parameters according to the distance value D (s, py,)
computed above and use the updated parameters to generate a new

song G (s, D (s,pu)) that is closer to the given UMP.

M(u,g(s,Z)(s,pu))‘?((U)) > M(uH@w|HOU))  (14)

As illustrated in Figure 1-c, we apply style transfer techniques in
our strategy: for an input seed song s, the UMP embedding model
computes its embedding ps = M(u,s | H(U)). Because the seed
song is not likely to perfectly align with the UMP, the distance
value between these two vectors is computed as:

Lhp = =Spu.ps = —C0s(Pu, Ps) (15)

Instead of backpropagating the distance value (loss) to update the
network parameters, we freeze the parameters of the UMP networks
and backpropagate the loss to the four distance parameters of the
input seed song. The four parameters are then updated according
to the gradients, formulated as follows,

arg max L% o {a, By, A} —=gd * sl (16)
a,py.A
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where gd denotes gradients and s/ denotes a hyperparameter step
length, deciding to what extent the user expects the generated song
to approach the UMP.

The seed song with the updated four distance parameters is
the input of the controllable music generator to generate a new
song. This music generator takes in a seed song in MIDI format
and four controllable distance parameters as inputs. Then it jointly
transforms hard-coded pop music composition rules, the seed song,
and the four parameters into a predicting probability of next notes.
Finally, it selectively picks notes and concatenates them into a piece
of song. The details of the controllable music generation process
are presented in [8]. To our knowledge, this system is the first of
its kind that achieves the goal of personalized AMG.

4 OBJECTIVE EVALUATION

We conduct objective experiments to test our UMP embedding
model. The results show that it can capture UMP and differentiate
users’ unique tastes from public trends.

4.1 Datasets

Our primary dataset is the Echo Nest Taste Profile Subset ? (here
denoted "the Echo dataset"), which contains 48,373,586 listening
events formatted in triplets of { user, song, times }, representing
the number of times that a user has listened to a song. There are
1,019,318 unique users and 384,546 unique songs in total. The ma-
jority of users (> 70%) have listened to at least 40 songs, and the
majority of songs (> 70%) have been listened to at least 10 times. We
further align 303,487 of the songs with their MP3 clips of 30-60 sec-
onds in [58], originally collected from 7digital®. The audio files are
padded to the same length before retrieving the preliminary audio
features. Among songs with available MP3 files, 251,859 songs have
available musical features from Spotify Web API, which we take as
the training set for our musical feature extractor, as mentioned in
section 3.2.1. After training, it then predicts the musical features of
the rest songs.

4.2 Compared Methods

Since there are few previous studies on UMP modeling, we compare
several different architectures as ablated models.

e UMP-MLP: a basic MLP is used instead of the proposed
upper CRNN-SA block.

o UMP-L’: a degraded loss function is used which does not
have the inter-user term Sim(Mat*, Mat ).

e UMP-audio: only preliminary audio features are employed.

o UMP-musical: only the extracted musical features are used.

o UMP-w/0SA: the self-attention layer is removed.

4.3 Objective Measures

To evaluate the performance of the UMP models, we compare their
validation losses £P!, which serve as measures to evaluate the
models’ ability to embed songs. We also propose the following
three objective measures to test how well a UMP model can project

Zhttp://millionsongdataset.com/tasteprofile/
Shttps://sg.7digital.com/
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similar UMPs to a cluster while keeping the clusters distinct from
the public trends as well as other UMP clusters.

1) Positioning refers to the average dot product similarity be-
tween the public music trend and two typical groups of users’
music preferences: the most representative U, and the most unique
Uy users. We rank the users by the proportion of the most popu-
lar 1024 songs in their listening histories and select the top and
bottom 0.05% of U as U, and Uy, respectively; we then compute
the public trends pop as the average of the most popular songs’
embeddings. An effective UMP model should output sharply con-
trasting positioning values for the two user groups. 2) Centrality
and 3) Dispersity refer to the average dot product similarity among
the UMP embeddings of the most alike users Uy and the most
unlike users Uyyjike, respectively. We rank the permutations of user
pairs by the overlap in their listening histories, then select the two
groups from the top and bottom 0.05% user pairs. An effective UMP
model should yield a large value for Centrality and a small value for
Dispersity. These three objective measures are computed by For-
mula (17). We deliberately define the two objective measures at the
user level rather than song level so that they are distinct from the
loss terms in training, to avoid the fallacy of circular justification.

1 1

Positioning = { — (U, - pop), — (Uy, - po
g {|U0|( ¢ - pop) |Uu|( u - pop)}
1
Centrality = —— i~ uj, uj,uj € Uy 17
entrality Ulik€|22ul Uj, Uj, Uj like ( )
1

Dispersity = Z Ui - uj, Ui, uj € Uyplike

| Uunlike | 2

4.4 Results and Visualization

The results of the defined objective measures, along with the valida-
tion loss, are listed in Table 1. Our proposed UMP embedding model
M outperforms the other baselines in all three objective measures,
indicating the advantages of 1) CRNN-SA over basic MLP in ex-
tracting complex musical features and preferences, 2) the proposed
contrastive loss function in differentiating different users, and 3)
the usage of fused audio and musical features over individual ones.
(Note that UMP-L’ uses a different loss function, so its £?? value is
not applicable for comparison.)

Table 1: Results of three objective measures and validation
loss. (P: Positioning; C: Centrality; D: Dispersity)

Model PU.) P(U,) C D LP'  Params

UMP-MLP 20.30 -2.41 17.34  0.55 0.7720 67.4M
UMP-L’ 8.47 -13.97 5.40 5.12 - 0.5M
UMP-audio 16.63 -9.21 1341  -0.23  0.6093 0.5M
UMP-musical  26.38 -0.30 22.63 2.43 0.8054 0.01M
UMP-w/0SA 23.46 -31.62 2441 4.75 0.6029 0.5M
M 27.73 -14.82 27.02 -0.43 0.5870 0.5M

We additionally visualize the distributions of song and user em-
beddings. We first project a group of songs’ embeddings computed
by our proposed model to a 2D surface by applying the T-distributed
Stochastic Neighbor Embedding (t-SNE) [26]. Figure 5-a shows the
dimension-reduced embeddings of the popular songs and 50 users’
liked songs (64 songs per user). The popular songs are gathered
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Figure 5: t-SNE Visualization of (a) the Embedding Results
of Songs, (b) the Embedding Results of Users. The number of
users is used as a parameter to specify the number of clusters,
which serves to verify whether the preferences of different
users can be distinguished.

in the center of the space (in green), and the rest of the songs
liked by individual users are mapped to surrounding areas (in other
colors). This “planet-satellite” shaped distribution aligns with our
expectation of an effective UMP model that separates unique music
preferences from the public trends.

And in Figure 5-b we visualize 500 UMP embeddings computed
by our proposed UMP model in the 2D space where each sample
point refers to the aggregation of a user’s listening histories, as
defined in Formula (9). In the plot, the majority of users are distin-
guishable and form a cluster in the center that represents the public
trends, with sporadic distributions around the periphery represent-
ing other users’ unique music tastes. The result also illustrates the
potential of our UMP embedding model to categorize users into
clusters based on the zones and directions where they fall in. Users
in the same cluster may have similar music tastes, which could be
applicable to downstream tasks like music recommendation, user
classification, and so on.

5 SUBJECTIVE EVALUATION

We conduct subjective evaluations with 46 participants (university
students) to verify the effectiveness of our system in UMP-aware
AMG. Results show that our system is capable of generating songs
that users prefer and continuously improving the lower-bound
performance of music-related services.

5.1 Experiment Procedure

The experiment is an iteration of listening - rating - model refine-
ment - music generation, repeated by 6 sessions (S1-S¢) that span
16 days. We selected the 30 seed songs based on an initial user
survey to cover the diverse music preferences of different people. In
Sy, participants listen to and rate the 30 seed songs on a ten-point
scale, and also browse a list of the most popular songs (as previ-
ously defined in the term Likability) and mark the songs they like.
Each participant’s choices update the general UMP model from pre-
training, creating their own preliminary UMP models M;. Then

the participants give ratings (ri‘\) for the 3 new songs, generated

iowest)

based on M; using their 3 lowest-rated (r songs as seed
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songs. The following sessions are 3 days after the previous one.
In S;, i € [2,6], the participants first listen again to the 3 songs
that were generated in S;—1 and give them "refreshed" ratings r?
that update their UMP models immediately to M;. They then rate 3
new songs that are generated based on their updated UMP models
using the 3 current lowest-rated (rlgo west) songs as seed songs. The
ratings of the 3 new songs, r{‘, update their UMP models again.
Finally, in Sg, besides the usual 6 songs (3 repeated and 3 new), the
participants again listen to the 3 songs generated in Sp for the third

; ; ; C
time and give ratings e

5.2 Subjective Measures

To quantify the system’s performance, we define the following
three subjective measurements. 1) m1: UMP Stability tests the con-
sistency of UMP over short (3 days) and relatively long (16 days)
é—l)) and %(réc - rf‘) respectively.
With the assumption of stable UMPs, AMG can be iteratively im-
proved by fine-tuning the generation model with new data instead
of re-training new models from scratch. 2) m2: Instant Improve-
ment measures the immediate increment of the users’ rating of
a generated song compared to the input seed song, computed as
rlA - rf"we“ . 3) m3: Continuous Improvement evaluates improve-
ments in the system’s low-bound performance. For each seed song,
we consider the highest rating among all its generated variants to
be its "representative performance” and the lowest values among all
songs’ representative performance to be the system’s lower-bound
performance. A continuous improvement of this measure shows
the system’s ability to upgrade service quality iteratively along

with users’ usage.

periods, computed as %(rlB —r

5.3 Results

The results show that our system achieved satisfactory instant and
continuous performance improvements, as presented in Figure 6.
The values are averaged over all 46 valid participants after filtering
out careless entries through randomly inserted fake samples. Firstly,
the blue line with x markers shows the average change per song
in users’ ratings of the same 3 songs after 3 days. After 16 days,
the average change of users’ ratings of the 3 generated songs of
S1 is 0.73 (with a standard deviation of 1.15). The small values of
the UMP Stability verify the assumption that UMPs stay fixed over

Rating
6
4
2.89 m2-a
2 - m2-b
—— m3
0 030022 007 014 001

St Sz S Sa S5 Se  Session
Figure 6: Results of Measures in Subjective Evaluation (m1:
UMP Stability; m2-a: Input Songs’ Ratings; m2-b: Generated
Songs’ Ratings; m3: Continuous Improvement)
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short and relatively long periods and thus indicates the potential
of the proposed system to iteratively improve the performance
without starting over. Secondly, the stacked bars present the m2 at
each session, where the average rating increase is in red. Thirdly,
the green line with circle markers traces m3 of the system’s lower-
bound performance. The positive values of m2 and an increasing
trend in m3 substantiate the system’s capability to capture UMPs,
push variants of seed songs towards UMPs instantly, and keep
improving the guaranteed basic service quality iteratively. A series
of demos* can illustrate how the four parameters control music
generation and how the generated pieces fit user preferences.

6 DISCUSSION AND FUTURE WORK

Though our proposed UMP model can be simply connected to a
deep learning-based music generator, we chose a rule- and statistics-
based model as the music generator, which is highly interpretable
and controllable with meaningful parameters. This allowed us to
thoroughly study how UMP influences AMG. After profoundly un-
derstanding the UMP’s impacts on AMG, we will be more confident
to further explore the integration of UMPs in deep learning based
AMG in the future.

By attaching the proposed UMP embedding model to music-
related applications, we can compute non-specialists’ UMPs via
their interactions with our system without the requirements of
musical knowledge, which is important for our intended clinical ap-
plication. We seek to develop an AMG system which could generate
patients’ preferred music to motivate them to adhere to Rhythmic
Auditory Stimulation [16], an evidence-based neurologic music
therapy which is clinically proven to improve the gait performance,
mobility and quality of life of Parkinson’s patients. We will con-
duct a clinical experiment with Parkinson’s patients to evaluate the
usability and efficacy of our proposed technology upon the ethics
approval.

Our UMP model can be easily generalized to other user prefer-
ence related tasks by re-defining the proposed preference-relevant
functions (i.e., popularity and likability threshold, negative sam-
pling strategy). More functions can be added to enhance the model’s
power. For example, user profiling can also be incorporated if users’
metadata is available.

7 CONCLUSION

User preference modeling can facilitate music-driven services, al-
lowing accurate music classification, recommendation, and per-
sonalized AMG. This work effectively models UMP from users’
listening histories and ratings, and then applies it to UMP-aware
AMG. In both objective and subjective experiments, our proposed
hierarchical CRNN-SA model with contrastive learning shows sat-
isfactory performance in UMP modeling and personalized AMG, as
well as the potential to improve music-related services’ qualities
continuously.
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