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Bayesian Deep learning Neurobiology：
Relational Thinking

Conversational Speech Recognition

How many 
infected cases

today?



Motivation: relational thinking
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Motivation: relational thinking
A type of human learning process, in which people spontaneously perceive 
meaningful patterns from the surrounding world .

A relevant concept: percept 

◦ Unconscious mental impressions while hearing, seeing…

◦ Relations between current sensory signals and prior knowledge 

Patricia A Alexander. Relational thinking and relational reasoning: harnessing the power of patterning. NPJ science of learning, 
1:16004, 2016
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Motivation: Relational thinking
A type of human learning process, in which people spontaneously perceive 
meaningful patterns from the surrounding world .

Two-step procedure: 

◦ Step 1: the generation of an infinite number of percepts

◦ Step 2: There percepts are then combined and transformed into 
concept or idea

Largely unexplored in AI (focus of this project) 

Patricia A Alexander. Relational thinking and relational reasoning: harnessing the power of patterning. NPJ science of learning, 
1:16004, 2016
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Overview

◦ Our Goal: relational thinking modeling and its application in acoustic 
modeling 

◦ Challenges (if percepts are modelled as graphs):
◦ Edges in the graph are not annotated/available (no relational labels)
◦ Hard to optimize over an infinite number of graphs 

◦ Existing works:
◦ GNNs (e.g. GVAE ) require input/output to have graph structure 
◦ Can not handle an infinite number of graphs
◦ Current acoustic models (e.g. RNN-HMM, the model we works on) is limited in 

representing complex relationships
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Overview

◦ Our Solution: 
◦ Build a type of random process that can simulate generation of an infinite 

number of percepts (graphs) called deep graph random process (DGP)
◦ Provide a close-form solution for combining an infinite number of graphs 

(coupling of percepts)
◦ Apply DGP for acoustic modelling (transformation of percetps)
◦ Obtain an analytical ELBO for jointly training

◦ Advantages: 
◦ Relation labels is not required during training
◦ Easy to apply for down-stream tasks, e.g. ASR 
◦ Computationally efficient and better performance
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Machine speech recognition

Speech-to-text transcription
◦ Transform audio into words

◦ Relational thinking process is ignored

We’ll get through this
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An utterance



How many new 
infected cases

today?
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Relational thinking as human speech recognition



How many new 
infected cases

today?
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Relational thinking as human speech recognition



How many new 
infected cases

today?
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Relational thinking as human speech recognition
Voice too low, 
but it should 
be a number.



Problem formulation

◦ Given the current utterance     and its histories (of fixed size, for simplicity)

◦ We aim to simulate relational thinking process, which is embedded into ASR: 
◦ Construct an infinite number of graphs 

◦ where          represent k-th percept for multiple utterances

◦ Then, these percept graphs are combined and further transformed via a graph transform 

◦ Our ultimate goal:                                     ,  with a close form solution

◦ So that, perception and transformation can be decoupled from speech (graph 
learning)
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Percept simulator: Deep Graph random 
process

Deep graph random process (DGP)
◦ a stochastic process to describe 

percept generation

◦ It contains a few nodes, each 
represents an utterance
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How many infected 
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Percept simulator: Deep Graph random 
process

Deep graph random process (DGP)
◦ a stochastic process to describe 

percept generation
◦ It contains a few nodes, each 

represents an utterance
◦ Each edge is attached with a deep 

Bernoulli process (DBP)
◦ Special Bernoulli process we proposed

◦ Bernoulli parameter is assumed to be 
close to 0
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How many infected 
cases today?

DBP:



Sampling from DGP
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How many infected 
cases today?

DBP:

DGP:

Sampling



Coupling of innumerable percept graphs

Coupling in DGP
◦ The goal is to extract a 

representation of an infinite number 
of percept graphs
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Coupling of innumerable percept graphs
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Coupling in DGP
◦ The goal is to extract a 

representation of an infinite number 
of percept graphs

◦ Computationally intractable to 
summing over their adjacency 
matrices 



Coupling of innumerable percept graphs

Coupling in DGP
◦ Construct an equivalent graph

◦ Summing over the original Bernoulli 
variables gives a Binomial 
distribution 

◦ Can we inference and sampling from 
such distribution ?

Bernoulli 
variable 1

Bernoulli 
variable n

Binomial 
variable 
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Inference and sampling of Binomial 
distribution with 

◦ Minimize the KL divergence and solve for x (Theorem1):
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Gaussian proxy of  Gaussian estimated 
from inputs

KL KL



Inference and sampling of Binomial 
distribution with 

◦ Directly parameterization of      and      are avoided
◦ Sampling: this allows for the re-parametrization trick to be used
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Transforming the general summary graph 
to be task-specific

Gaussian graph transform
◦ Each entry of its transform 

matrix follows a conditional 
Gaussian distribution

◦ Conditioning on edges of 
summary graph
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Relational  
thinking 
network 
(RTN)
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Application of DGP for acoustic modeling



Learning

Variational inference is applied to jointly optimise DGP, the Gaussian graph 
transform, and the RNN-HMM acoustic model

◦ Challenge #1 : DGP contains too many latent variables  
◦ Bernoullis and Binomials are equivalent , specifying one determine the whole DGP

23



Learning

This is computational intractable, 
as n approaches infinity

Variational inference is applied to jointly optimise DGP, the Gaussian graph 
transform, and the RNN-HMM acoustic model

◦ Challenge #1 : DGP contains too many latent variables  
◦ Bernoullis and Binomials are equivalent , specifying one determine the whole DGP

◦ Challenge #2 :  One of a KL term of our ELBO is computational intractable

24



The analytical evidence lower bound 
(ELBO)

◦ This theorem allows us to obtain a close form solution of ELBO.

◦ In particular:

◦ The solution is irrelevant to the infinity 
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Experiments: data sets
We evaluated the proposed method on several ASR datasets:

ASR tasks
◦ CHiME-2 (preliminary study, not a conversational ASR task):  

◦ Noisy version of WSJ0

◦ CHiME-5 (conversaitional ASR task)
◦ First large-scale corpus of real multi-speaker conversational speech

◦ Train: ~40 hours, Eval: ~5 hours.

Quantitative/qualitative study of the generated graphs
◦ Synthetic Relational SWB

◦ SWB: telephony conversational speech

◦ SwDA: extends SWB with graph annotations for utterances

◦ Train: 30K utterances (without graphs) , Test: graphs involved in 110K utterances  
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Experiments: model configurations
L: number of layers;
N: number of hidden states per 
layer; 
P: number of model parameters
T: training time per epoch (hrs)

Hengguan Huang, Hao Wang, Brain Mak. Recurrent Poisson process unit for speech recognition. AAAI, 2019. 27



Robustness to input noise

Detailed WER (%) on test set of CHiME-2
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ASR Results on conversational task

Outperforms other baselines

WER (%) Eval of CHiME5
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Quantitative study: can we infer utterance 
relationships with the generated graphs

Error rate(%) of relation prediction on
Synthetic Relational SWB
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We can capture 
relationships without 
relational data !
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We can capture 
relationships without 
relational data !
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We can capture 
relationships without 
relational data !
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Recognition results of the utterance 10

Ground truth:  so so where do you go do you go to Berkeley
SRU: so so what do you go do you go to Berkeley
RTN (ours):      so so where do you go do you go to Berkeley
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We can capture 
relationships without 
relational data !
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Take-away

Expand the variational family with a deep graph 
random process
◦ Enable relational thinking modelling

◦ Graph learning without any relational labelling

◦ Easy to be applied for a downstream task such as ASR

◦ Improvements on several speech recognition datasets
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