Supplementary Materials: Deep Graph Random Process for Relational-Thinking-Based Speech Recognition

1 Proof of Theorem 1

Theorem 1. Let $\mathcal{N}(\mu, \sigma^2)$ denotes a Gaussian distribution with $\mu < 1/2$, and let $\mathcal{B}(n, \lambda)$ denotes a Binomial distribution with $n \to +\infty$ and $\lambda \to 0$, where n is increasing while λ is decreasing. There exists a real constant m such that if $m = n\lambda$ and if we define:

$$f_1(x) = \mathrm{KL}(\mathcal{N}(x, x(1-x)))||\mathcal{N}(\mu, \sigma^2))$$

$$f_2(x) = \mathrm{KL}(\mathcal{N}(x, x(1-x)))||\mathcal{N}(n\lambda, n\lambda(1-\lambda))$$

$$f_2^* = \min_{x} f_2(x), \text{ where } x \in (0, 1)$$

we have that: $f_1(x)$ attains its minimum on the interval (0, 1) and $f_2(x) - f_2^*$ is bounded on the interval $(0, \sqrt{2}/2 - 1/2)$, with:

$$x = m = \frac{1 + l - \sqrt{1 + l^2}}{2}, \ where \ l = \frac{2\sigma^2}{1 - 2\mu}$$

Proof. The derivative of the function $f_1(x)$ over x can be written as:

$$f_1'(x) = x^2 - (1 + \frac{2\sigma^2}{1 - 2\mu})x + \frac{\sigma^2}{1 - 2\mu}$$

We set it as 0 and solve for x, giving

$$x = \begin{cases} \frac{1+l-\sqrt{1+l^2}}{2} & \text{if } \mu < 1/2\\ \frac{1+l+\sqrt{1+l^2}}{2} & \text{if } \mu > 1/2 \end{cases}, \text{ where } l = \frac{2\sigma^2}{1-2\mu} \tag{1}$$

Let $x = n\lambda$, the function $f_2(x)$ can be written as:

$$f_2(n\lambda) = \sqrt{\frac{1-n\lambda}{1-\lambda}} + \frac{1-\lambda}{2(1-n\lambda)} - 1/2$$

Let $g(n\lambda) = \lim_{\lambda \to 0} f_2(n\lambda)$, we have

$$g(n\lambda) = \sqrt{1 - n\lambda} + \frac{1}{2(1 - n\lambda)} - 1/2$$

Let $z = \sqrt{1 - n\lambda}$, we have:

$$g(z) = z + 1/(2z^2) - 1/2$$

The derivative of function g(z) over z can be written as:

$$g'(z) = 1 - 1/z^3$$

Given that $z \in (0, 1)$, we have g'(z) < 0. Then g(z) attains its minimum 1 when z approaches 1. Equivalently, $f_2(n\lambda)$ attains its minimum 1 when $n\lambda$ approaches 0.

Considering Eq.(1), we find that $n\lambda$ is bounded on (0, 1/2) if $\mu < 1/2$,

We then calculate the difference between $f_2(n\lambda)$ and its minimum. It can be written as

$$\Delta f_2(n\lambda) = \lim_{\lambda \to 0} [f_2(x) - f_2^*]$$
$$= g(n\lambda) - 1$$
$$= \sqrt{1 - n\lambda} + \frac{1}{2(1 - n\lambda)} - 3/2$$

Let $m = n\lambda$, the derivative of function $\Delta f_2(m)$ over m can be written as:

$$\Delta f_2'(m) = \frac{1 - (1 - m)^{3/2}}{2(1 - m)^2} > 0$$

Then $\Delta f_2(m)$ is monotonically increasing over (0, 1/2). Therefore $\Delta f_2(m)$ is bounded on $(0, \sqrt{2}/2 - 1/2)$

2 **Proof of Theorem 2**

Theorem 2. Suppose we are given two Binomial distributions, $\mathcal{B}(n, \lambda)$ and $\mathcal{B}(n, \lambda^0)$ with $n \to +\infty$, $\lambda^0 \to 0$ and $\lambda \to 0$, where n is increasing while λ and λ^0 are decreasing. There exists a real constant m and another real constant $m^{(0)}$, such that if $m = n\lambda$ and $m^{(0)} = n\lambda^{(0)}$ and if $\lambda > \lambda^{(0)}$, we have:

$$\mathrm{KL}(\mathcal{B}(n,\lambda)||\mathcal{B}(n,\lambda^{0})) < m\log\frac{m}{m^{(0)}} + (1-m)\log\frac{1-m+m^{2}/2}{1-m^{(0)}+m^{(0)^{2}}/2}$$

Proof. Let $m = n\lambda$ and $m^{(0)} = n\lambda^{(0)}$, we have

$$KL(\mathcal{B}(n,\lambda)||\mathcal{B}(n,\lambda^{(0)})) = n\lambda \log \frac{\lambda}{\lambda^{(0)}} + n(1-\lambda) \log \frac{1-\lambda}{1-\lambda^{(0)}}$$
$$= n\lambda \log \frac{n\lambda}{n\lambda^{(0)}} + n(1-\lambda) \log \frac{1-\lambda}{1-\lambda^{(0)}}$$
$$= m \log \frac{m}{m^{(0)}} + n(1-\lambda) \log \frac{1-\lambda}{1-\lambda^{(0)}}$$
(2)

We then take the right part,

$$g = n(1 - \lambda) \log \frac{1 - \lambda}{1 - \lambda^{(0)}} = (1 - \lambda) \log \frac{(1 - \lambda)^n}{(1 - \lambda^{(0)})^n}$$

By Taylor series' theorem with Lagrange remainder, g can be written as:

$$g = (1 - \lambda) \log \frac{1 - n\lambda + \frac{n(n-1)}{2}\lambda^2 + R_{j=2}(-\lambda)}{1 - n\lambda^{(0)} + \frac{n(n-1)}{2}\lambda^{(0)^2} + R_{j=2}(-\lambda^{(0)})}$$

There exists a $\theta \in (0, 1)$ such that,

$$R_{j=2}(x) = \frac{x^3(n-2)(n-1)n(1+x\theta)^{n-3}}{6}$$

Given that $n \to +\infty$ and $x \in (-1,1)$, we have $(R)'_{j=2}(x) > 0$. Therefore, $R_{j=2}(x)$ is monotonically increasing over (-1,1). Since $\lambda > \lambda^0$, we have

$$R_{j=2}(-\lambda) < R_{j=2}(-\lambda^{(0)})$$
(3)

We then seek to prove:

$$k = \frac{1 - n\lambda + \frac{n(n-1)}{2}\lambda^2}{1 - n\lambda^{(0)} + \frac{n(n-1)}{2}\lambda^{(0)^2}} < 1$$

Let $f(x) = n(n-1)x^2/2 - nx + 1$, we have

$$k = \frac{f(\lambda)}{f(\lambda^{(0)})}$$

Here, f(x) is an U-shaped parabola with axis x = 1/(n-1). By theorem 1, we have $n\lambda < 1/2$, then we have $\lambda^0 < \lambda < 1/(n-1)$, then f(x) is monotonically increasing over the support of λ^0 and λ , namely

$$f(\lambda) < f(\lambda^0) \tag{4}$$

With Eq.(3) and Eq.(4), g can be written as:

$$g < (1 - \lambda) \log \frac{1 - n\lambda + \frac{n(n-1)}{2}\lambda^2}{1 - n\lambda^{(0)} + \frac{n(n-1)}{2}\lambda^{(0)^2}}$$

= $(1 - \lambda) \log \frac{1 - m + m^2/2 - n\lambda^2/2}{1 - m^{(0)} + m^{(0)^2}/2 - n\lambda^{(0)^2}/2}$

Similarly, let $h(x) = 1 - x + x^2/2$. It is an U-shaped parabola with axis x = 1 such that

$$-n\lambda^2/2 < -n\lambda^{(0)^2}/2$$
$$1 - m + m^2/2 < 1 - m^{(0)} + m^{(0)^2}/2$$

Then we have

$$g < (1 - \lambda) \log \frac{1 - m + m^2/2}{1 - m^{(0)} + m^{(0)^2}/2}$$

$$< (1 - n\lambda) \log \frac{1 - m + m^2/2}{1 - m^{(0)} + m^{(0)^2}/2}$$

$$= (1 - m) \log \frac{1 - m + m^2/2}{1 - m^{(0)} + m^{(0)^2}/2}$$
(5)

Combining Eq.(2) and Eq.(5) concludes the proof.

3 Test of Significance

The statistical significance test tool sc_stats from National Institute of Standards and Technology (NIST) is used to compare our RTN and the baseline VSRU on CHiME-2 HMM states classification task. The test results find a significant difference in performance between the RTN and the VSRU at the level of p < 0.001.

4 Table of detailed WER (%) on the CHiME-2 test set

We report the detailed WERs as a function of the SNR in CHiME-2 shown in Table 1. For all SNRs, the RTN outperforms other Baseline RNNs including LSTM, SRU by a large margin. It outperforms the state-of-the-art models including VSRU, RRN and RPPU for most SNRs. This suggests that incorporating the relational thinking into speech recognition lends itself to the model's robustness.

Model	-6 dB	-3 dB	0 dB	3 dB	6 dB	9 dB
LSTM [Huang et al., 2019]	42.4	33.5	26.7	21.1	17.3	15.3
SRU [Huang et al., 2019]	42.5	34.0	26.2	22.2	17.4	15.1
RPPU [Huang et al., 2019]	39.9	31.1	24.9	20.3	16.0	13.2
Our SRU [Lei et al., 2017]	42.1	33	26.1	20.7	16.8	15.1
VSRU [Chung et al., 2015]	41.5	32.8	26.2	20.9	16.9	16.1
RRN [Palm et al., 2018]	40.2	32.1	25.9	20.2	16.2	14.0
RTN (Ours)	39.0	30.4	25.4	19.4	15.5	13.8

Table 1: Detailed WER (%) on the CHiME-2 test set.

5 More examples of graphs generated by RTN

Figure 1: Example of graphs generated by RTN: ten sequential utterances from "sw02262-A_029098-029769" to "sw02262-B_031645-031828"

	Tas	Summary Graph	
	1	The money wouldn't be being saved anyway you know have trade off if you never see it you don't spend it so and it's	e to
	2	I understand though it believe me. I do that myself and I dis with you. I don't think it's the worst investment in the world	sagree
	3	Yeah.	Utterance ID
Ti	4	Do you	Speaker A
	5	Do you really not I, you know I debate about whether it's re good or not you know.	Yeah
me	6	Well it's in terms of guaranteed return on investment and m you don't start looking for that word guaranteed until later.	aybe Speaker B
	7	Yeah.	Yeah
	8	Yeah.	0.0-0.1 0.1-0.2
♦	9	Uh it's shown a history that uh sure beats anything else.	0.2-0.5
Current Utterance	10	Yeah that's true that's very true.	

Figure 2: Example of graphs generated by RTN: ten sequential utterances from "sw02062-B_019277-020062" to "sw02062-B_022871-023232"

	Task-spe	cific Graph	Summary Graph
		Seemed that every other time a president tried to get support an action like uh	t for
	2	Uh president carter and his thing with the hostage crisis he always did it through rhetoric.	,
	3	Right.	Utterance ID
	4	Right.	Speaker A
Ŀ	5	And this time president bush did it through action and he de policy.	rove Yeah
me	6	Um-hum.	Speaker B
		By	Yeah
	8	The course he took and almost forced public support or un in mean he left almost no alternative.	0.0-0.1
♦	9	Yes.	0.2-0.5
Current Utterance		That's right.	

Figure 3: Example of graphs generated by RTN: ten sequential utterances from "sw02130-A_002749-003357" to "sw02130-B_005687-005840"

References

- [Chung et al., 2015] Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., and Bengio, Y. (2015). A recurrent latent variable model for sequential data. In *Advances in neural information processing systems*, pages 2980–2988.
- [Huang et al., 2019] Huang, H., Wang, H., and Mak, B. (2019). Recurrent poisson process unit for speech recognition. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 6538–6545.
- [Lei et al., 2017] Lei, T., Zhang, Y., Wang, S. I., Dai, H., and Artzi, Y. (2017). Simple recurrent units for highly parallelizable recurrence. *arXiv preprint arXiv:1709.02755*.
- [Palm et al., 2018] Palm, R., Paquet, U., and Winther, O. (2018). Recurrent relational networks. In Advances in Neural Information Processing Systems, pages 3368–3378.