Supplementary Materials: Deep Graph Random Process for Relational-Thinking-Based Speech Recognition

1 Proof of Theorem 1

Theorem 1. Let $\mathcal{N}\left(\mu, \sigma^{2}\right)$ denotes a Gaussian distribution with $\mu<1 / 2$, and let $\mathcal{B}(n, \lambda)$ denotes a Binomial distribution with $n \rightarrow+\infty$ and $\lambda \rightarrow 0$, where n is increasing while λ is decreasing. There exists a real constant m such that if $m=n \lambda$ and if we define:

$$
\begin{aligned}
f_{1}(x) & =\operatorname{KL}\left(\mathcal{N}(x, x(1-x)) \| \mathcal{N}\left(\mu, \sigma^{2}\right)\right) \\
f_{2}(x) & =\operatorname{KL}(\mathcal{N}(x, x(1-x)) \| \mathcal{N}(n \lambda, n \lambda(1-\lambda)) \\
f_{2}^{*} & =\min _{x} f_{2}(x), \text { where } x \in(0,1)
\end{aligned}
$$

we have that: $f_{1}(x)$ attains its minimum on the interval $(0,1)$ and $f_{2}(x)-f_{2}^{*}$ is bounded on the interval $(0, \sqrt{2} / 2-1 / 2)$, with:

$$
x=m=\frac{1+l-\sqrt{1+l^{2}}}{2}, \text { where } l=\frac{2 \sigma^{2}}{1-2 \mu}
$$

Proof. The derivative of the function $f_{1}(x)$ over x can be written as:

$$
f_{1}^{\prime}(x)=x^{2}-\left(1+\frac{2 \sigma^{2}}{1-2 \mu}\right) x+\frac{\sigma^{2}}{1-2 \mu}
$$

We set it as 0 and solve for x, giving

$$
x=\left\{\begin{array}{ll}
\frac{1+l-\sqrt{1+l^{2}}}{2} & \text { if } \mu<1 / 2 \tag{1}\\
\frac{1+l+\sqrt{1+l^{2}}}{2} & \text { if } \mu>1 / 2
\end{array}, \text { where } l=\frac{2 \sigma^{2}}{1-2 \mu}\right.
$$

Let $x=n \lambda$, the function $f_{2}(x)$ can be written as:

$$
f_{2}(n \lambda)=\sqrt{\frac{1-n \lambda}{1-\lambda}}+\frac{1-\lambda}{2(1-n \lambda)}-1 / 2
$$

Let $g(n \lambda)=\lim _{\lambda \rightarrow 0} f_{2}(n \lambda)$, we have

$$
g(n \lambda)=\sqrt{1-n \lambda}+\frac{1}{2(1-n \lambda)}-1 / 2
$$

Let $z=\sqrt{1-n \lambda}$, we have:

$$
g(z)=z+1 /\left(2 z^{2}\right)-1 / 2
$$

The derivative of function $g(z)$ over z can be written as:

$$
g^{\prime}(z)=1-1 / z^{3}
$$

Given that $z \in(0,1)$, we have $g^{\prime}(z)<0$. Then $g(z)$ attains its minimum 1 when z approaches 1 . Equivalently, $f_{2}(n \lambda)$ attains its minimum 1 when $n \lambda$ approaches 0 .
Considering Eq. 1 , we find that $n \lambda$ is bounded on $(0,1 / 2)$ if $\mu<1 / 2$,
We then calculate the difference between $f_{2}(n \lambda)$ and its minimum. It can be written as

$$
\begin{aligned}
\Delta f_{2}(n \lambda) & =\lim _{\lambda \rightarrow 0}\left[f_{2}(x)-f_{2}^{*}\right] \\
& =g(n \lambda)-1 \\
& =\sqrt{1-n \lambda}+\frac{1}{2(1-n \lambda)}-3 / 2
\end{aligned}
$$

Let $m=n \lambda$, the derivative of function $\Delta f_{2}(m)$ over m can be written as:

$$
\Delta f_{2}^{\prime}(m)=\frac{1-(1-m)^{3 / 2}}{2(1-m)^{2}}>0
$$

Then $\Delta f_{2}(m)$ is monotonically increasing over $(0,1 / 2)$. Therefore $\Delta f_{2}(m)$ is bounded on $(0, \sqrt{2} / 2-1 / 2)$

2 Proof of Theorem 2

Theorem 2. Suppose we are given two Binomial distributions, $\mathcal{B}(n, \lambda)$ and $\mathcal{B}\left(n, \lambda^{0}\right)$ with $n \rightarrow+\infty, \lambda^{0} \rightarrow 0$ and $\lambda \rightarrow 0$, where n is increasing while λ and λ^{0} are decreasing. There exists a real constant m and another real constant $m^{(0)}$, such that if $m=n \lambda$ and $m^{(0)}=n \lambda^{(0)}$ and if $\lambda>\lambda^{(0)}$, we have:

$$
\mathrm{KL}\left(\mathcal{B}(n, \lambda) \| \mathcal{B}\left(n, \lambda^{0}\right)\right)<m \log \frac{m}{m^{(0)}}+(1-m) \log \frac{1-m+m^{2} / 2}{1-m^{(0)}+m^{(0)^{2}} / 2}
$$

Proof. Let $m=n \lambda$ and $m^{(0)}=n \lambda^{(0)}$, we have

$$
\begin{align*}
\mathrm{KL}\left(\mathcal{B}(n, \lambda) \| \mathcal{B}\left(n, \lambda^{(0)}\right)\right) & =n \lambda \log \frac{\lambda}{\lambda^{(0)}}+n(1-\lambda) \log \frac{1-\lambda}{1-\lambda^{(0)}} \\
& =n \lambda \log \frac{n \lambda}{n \lambda^{(0)}}+n(1-\lambda) \log \frac{1-\lambda}{1-\lambda^{(0)}} \tag{2}\\
& =m \log \frac{m}{m^{(0)}}+n(1-\lambda) \log \frac{1-\lambda}{1-\lambda^{(0)}}
\end{align*}
$$

We then take the right part,

$$
g=n(1-\lambda) \log \frac{1-\lambda}{1-\lambda^{(0)}}=(1-\lambda) \log \frac{(1-\lambda)^{n}}{\left(1-\lambda^{(0)}\right)^{n}}
$$

By Taylor series' theorem with Lagrange remainder, g can be written as:

$$
g=(1-\lambda) \log \frac{1-n \lambda+\frac{n(n-1)}{2} \lambda^{2}+R_{j=2}(-\lambda)}{1-n \lambda^{(0)}+\frac{n(n-1)}{2} \lambda^{(0)^{2}}+R_{j=2}\left(-\lambda^{(0)}\right)}
$$

There exists a $\theta \in(0,1)$ such that,

$$
R_{j=2}(x)=\frac{x^{3}(n-2)(n-1) n(1+x \theta)^{n-3}}{6}
$$

Given that $n \rightarrow+\infty$ and $x \in(-1,1)$, we have $(R)_{j=2}^{\prime}(x)>0$. Therefore, $R_{j=2}(x)$ is monotonically increasing over $(-1,1)$. Since $\lambda>\lambda^{0}$, we have

$$
\begin{equation*}
R_{j=2}(-\lambda)<R_{j=2}\left(-\lambda^{(0)}\right) \tag{3}
\end{equation*}
$$

We then seek to prove:

$$
k=\frac{1-n \lambda+\frac{n(n-1)}{2} \lambda^{2}}{1-n \lambda^{(0)}+\frac{n(n-1)}{2} \lambda^{(0)^{2}}}<1
$$

Let $f(x)=n(n-1) x^{2} / 2-n x+1$, we have

$$
k=\frac{f(\lambda)}{f\left(\lambda^{(0)}\right)}
$$

Here, $f(x)$ is an U-shaped parabola with axis $x=1 /(n-1)$. By theorem 1 , we have $n \lambda<1 / 2$, then we have $\lambda^{0}<\lambda<1 /(n-1)$, then $f(x)$ is monotonically increasing over the support of λ^{0} and λ, namely

$$
\begin{equation*}
f(\lambda)<f\left(\lambda^{0}\right) \tag{4}
\end{equation*}
$$

With Eq. (3) and Eq. (4), g can be written as:

$$
\begin{aligned}
g & <(1-\lambda) \log \frac{1-n \lambda+\frac{n(n-1)}{2} \lambda^{2}}{1-n \lambda^{(0)}+\frac{n(n-1)}{2} \lambda^{(0)^{2}}} \\
& =(1-\lambda) \log \frac{1-m+m^{2} / 2-n \lambda^{2} / 2}{1-m^{(0)}+m^{(0)^{2}} / 2-n \lambda^{(0)^{2}} / 2}
\end{aligned}
$$

Similarly, let $h(x)=1-x+x^{2} / 2$. It is an U-shaped parabola with axis $x=1$ such that

$$
\begin{gathered}
-n \lambda^{2} / 2<-n \lambda^{(0)^{2}} / 2 \\
1-m+m^{2} / 2<1-m^{(0)}+m^{(0)^{2}} / 2
\end{gathered}
$$

Then we have

$$
\begin{align*}
g & <(1-\lambda) \log \frac{1-m+m^{2} / 2}{1-m^{(0)}+m^{(0)^{2} / 2}} \\
& <(1-n \lambda) \log \frac{1-m+m^{2} / 2}{1-m^{(0)}+m^{(0)^{2} / 2}} \tag{5}\\
& =(1-m) \log \frac{1-m+m^{2} / 2}{1-m^{(0)}+m^{(0)^{2} / 2}}
\end{align*}
$$

Combining Eq. (2) and Eq. (5) concludes the proof.

3 Test of Significance

The statistical significance test tool sc_stats from National Institute of Standards and Technology (NIST) is used to compare our RTN and the baseline VSRU on CHiME-2 HMM states classification task. The test results find a significant difference in performance between the RTN and the VSRU at the level of $p<0.001$.

4 Table of detailed WER (\%) on the CHiME-2 test set

We report the detailed WERs as a function of the SNR in CHiME-2 shown in Table 1 . For all SNRs, the RTN outperforms other Baseline RNNs including LSTM, SRU by a large margin. It outperforms the state-of-the-art models including VSRU, RRN and RPPU for most SNRs. This suggests that incorporating the relational thinking into speech recognition lends itself to the model's robustness.

Table 1: Detailed WER (\%) on the CHiME-2 test set.

Model	-6 dB	-3 dB	0 dB	3 dB	6 dB	9 dB
LSTM [Huang et al., 2019]	42.4	33.5	26.7	21.1	17.3	15.3
SRU [Huang et al., 2019]	42.5	34.0	26.2	22.2	17.4	15.1
RPPU [Huang et al., 2019]	39.9	31.1	24.9	20.3	16.0	$\mathbf{1 3 . 2}$
Our SRU [Lei et al., 2017]	42.1	33	26.1	20.7	16.8	15.1
VSRU [Chung et al., 2015]	41.5	32.8	26.2	20.9	16.9	16.1
RRN [Palm et al., 2018]	40.2	32.1	25.9	20.2	16.2	14.0
RTN (Ours)	$\mathbf{3 9 . 0}$	$\mathbf{3 0 . 4}$	$\mathbf{2 5 . 4}$	$\mathbf{1 9 . 4}$	$\mathbf{1 5 . 5}$	13.8

5 More examples of graphs generated by RTN

Figure 1: Example of graphs generated by RTN: ten sequential utterances from "sw02262-A_029098-029769" to "sw02262-B_031645-031828"

Figure 2: Example of graphs generated by RTN: ten sequential utterances from "sw02062-B_019277-020062" to "sw02062-B_022871-023232"

Figure 3: Example of graphs generated by RTN: ten sequential utterances from "sw02130-A_002749-003357" to "sw02130-B_005687-005840"

References

[Chung et al., 2015] Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., and Bengio, Y. (2015). A recurrent latent variable model for sequential data. In Advances in neural information processing systems, pages 2980-2988.
[Huang et al., 2019] Huang, H., Wang, H., and Mak, B. (2019). Recurrent poisson process unit for speech recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6538-6545.
[Lei et al., 2017] Lei, T., Zhang, Y., Wang, S. I., Dai, H., and Artzi, Y. (2017). Simple recurrent units for highly parallelizable recurrence. arXiv preprint arXiv:1709.02755.
[Palm et al., 2018] Palm, R., Paquet, U., and Winther, O. (2018). Recurrent relational networks. In Advances in Neural Information Processing Systems, pages 3368-3378.

