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ABSTRACT
Existing content-based music recommendation systems typ-
ically employ a two-stage approach. They first extract tra-
ditional audio content features such as Mel-frequency cep-
stral coefficients and then predict user preferences. How-
ever, these traditional features, originally not created for
music recommendation, cannot capture all relevant infor-
mation in the audio and thus put a cap on recommenda-
tion performance. Using a novel model based on deep belief
network and probabilistic graphical model, we unify the two
stages into an automated process that simultaneously learns
features from audio content and makes personalized recom-
mendations. Compared with existing deep learning based
models, our model outperforms them in both the warm-start
and cold-start stages without relying on collaborative filter-
ing (CF). We then present an efficient hybrid method to
seamlessly integrate the automatically learnt features and
CF. Our hybrid method not only significantly improves the
performance of CF but also outperforms the traditional fea-
ture based hybrid method.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.5.5 [Sound and Music Computing]: [Mod-
eling, Signal analysis, synthesis and processing]

General Terms
Model, Algorithm, Experimentation

Keywords
music recommendation; deep learning; feature learning; prob-
abilistic graphical model

1. INTRODUCTION
A music recommendation system automatically recom-

mends songs that match a user’s music preference from a
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large database. The quality of a match is influenced by
many factors concerning the user (e.g., personality, emo-
tional states, activities, social environment) and the song
(e.g., music audio content, novelty, diversity).

Among song-related factors, music audio content is of
great importance. In most cases, we like/dislike a song as
a result of characteristics from its audio content, such as
vocal, melody, rhythm, timbre, genre, instrument, or lyrics.
Without listening to the content, we know almost nothing
about the song’s quality, let alone whether we would like it.
Because music content largely determines our preferences, it
should be able to provide good predictive power for recom-
mendation.

However, existing music recommenders relying on music
audio content usually produce unsatisfactory recommenda-
tion performance. They all follow a two-stage approach:
extracting traditional audio content features such as Mel-
frequency cepstral coefficients (MFCC), then using these fea-
tures to predict user preferences [1, 2, 3]. Traditional audio
content features, however, were not created for music rec-
ommendation or music related tasks (For example, MFCC
was originally used for speech recognition [4]). They only
became attached to music recommendation after the discov-
ery that they can also describe high-level music concepts like
genre, timbre, and melody. Using such features can result in
poor recommendation performance in two ways. First, the
high-level concepts cannot be described accurately due to
the so-called semantic gap [5]. Second, even if the feature
descriptions are accurate, the high-level concepts may not
be essential to the user’s music preferences. Therefore, tra-
ditional features could fail to take into account information
relevant to music recommendation.

We believe that the key to an effective content-based mu-
sic recommendation method is a set of good content features.
Manually crafting such features is possible but time consum-
ing and painstaking. A better approach is to combine the
existing two-stage approach into a unified and automated
process: features are learnt automatically and directly from
audio content to maximize recommendation performance.
Recent development in deep learning techniques [6] has made
such a unified approach possible. In fact, people have al-
ready started using deep learning to learn features for other
music tasks such as music genre classification [7] and music
emotion prediction [8] with promising results.

Content-based methods also frequently combines collabo-
rative filtering (CF), which recommends songs based on the
interests of like-minded users. Most existing recommenders
are based on CF because of its superior accuracy [9]. How-



ever, as it depends solely on usage data, CF is powerless
when confronted with the new-song problem — it cannot
recommend songs without prior usage history. Content-
based methods do not suffer from this problem because they
can predict based on a song’s audio content, which is usu-
ally available for online merchants. Therefore, content-based
methods can rescue CF in the new-song scenario. Because
CF and content-based methods take advantage of different
dimensions of information, it is possible to combine them
into a hybrid method for better predictions.

Thus motivated, we first develop a content-based model
that automatically and simultaneously extracts features from
audio content and makes personalized recommendations. We
then develop a hybrid method to combine both CF and con-
tent features. Specifically, this paper seeks to make the fol-
lowing contributions:

• Content-based method : We develop a novel content-
based recommendation model based on probabilistic
graphical model and the deep belief network (DBN)
proposed by the deep learning community [10]. It uni-
fies feature learning and recommendation. While it
does not rely on collaborative filtering, it outperforms
baseline content-based models, which rely on CF, in
both the cold-start stage and warm-start stage.

• Hybrid method: To combine CF and music content, we
apply the automatically learnt audio features to an ef-
ficient hybrid model. Experimental results show that
the learnt features complement CF and also outper-
form traditional features in hybrid methods.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the prevailing method in music rec-
ommendation and briefly introduces deep belief network as
well as its applications in music tasks. Section 3 describes
our content-based and hybrid recommendation model and
discusses the baseline content-based model used in our ex-
periments. Section 4 describes our extensive experimental
evaluations. Section 5 concludes this work and discusses
future research directions.

2. RELATED WORK
We will enumerate the current music recommendation tech-

niques before introducing deep belief network and other deep
learning techniques. We will then review applications of
deep learning techniques in music tasks including music rec-
ommendation.

2.1 Music recommendation
Currently music recommender systems can be classified

into four categories: collaborative filtering (CF), content-
based methods, context-based methods and hybrid methods.

Collaborative filtering recommends songs by consider-
ing the preferences of other like-minded users. For instance,
if user A and B have similar music preferences, then songs
liked by A but not yet considered by B will be recommended
to B. The state-of-the-art methods for performing CF are
based on matrix factorization (MF), which is well summa-
rized by [11]. In Section 3.1, we will elaborate on one of the
MF method, probabilistic matrix factorization.

Content-based methods recommend songs that have
similar audio content to the user’s preferred songs. Most

existing content-based methods first extract traditional au-
dio features such as MFCC and then recommend based on
the similarities between the feature vectors of songs. How-
ever, the similarity metrics used are often ad hoc, because
they are not optimized with respect to the recommendation
objective and are usually chosen from a very restrictive set of
distance functions such as Euclidean distance [12, 13], Earth
Mover’s distance [14], or Pearson correlation distance [15,
16]. While two recent works tried to employ machine learn-
ing techniques to automatically learn a similarity metric [17,
18], they still relied on traditional features. Attempts have
been made to perform feature selection or transformation
on traditional features [13, 15], but they remain subopti-
mal as the traditional features may fail to take into account
essential information.

Context-based methods recommend songs to match
various aspects of the user context (e.g., activities, environ-
ment, or physiological states [3, 19]). They have become in-
creasingly popular in recent years with the advent of sensor-
rich and computationally powerful smartphones.

Hybrid methods combine two or more of the above
methods. Hybrid CF and content-based methods1 have been
explored extensively in recommenders for other products
such as movies [20, 21, 22, 23]. Although such approaches
can potentially generalize to music recommendation, we do
not use them due to efficiency issues: (1) they use full
Bayesian inference [20, 22, 23] or Monte Carlo simulation [24]
and are thus much slower than our algorithm; (2) they have
been applied to a dataset with thousands of users and items
and 1 million ratings, while our dataset has hundreds of
thousands of users and items and 28 million ratings. Di-
rectly applying these algorithms on our dataset is thus not
trivial.

To our knowledge, Yoshii et al. [2] are the first to combine
CF and content-based methods in music recommendation.
In this work, MFCC features were quantized into codewords
and used together with rating data in the three-way aspect
model, a probabilistic model, originally proposed in [25] for
bibliographic recommendation. Almost concurrently, Li et
al. [26] built a probabilistic hybrid approach to unify CF
and traditional features.

While Yoshii and Li’s works were promising starting points
for model-based hybrid methods, subsequent studies all fo-
cused on content similarity based methods. Castillo [27]
proposed a hybrid recommender by linearly combining the
results of a content similarity based recommender and a
collaborative filtering based one. Tiemann et al. [28] and
Shruthi et al. [29] developed approaches that successfully
fused CF and content similarities but revealed little infor-
mation about the fusion process. Bu et al. [30] and Shao et
al. [31] used hyper-graphs to combine usage data and content
similarity information. Domingues et al. [32] first obtained
song similarities based on CF and content features sepa-
rately before integrating the two kinds of similarities into a
hybrid similarity metric. Similarly, Bogdanov et al. [16] also
combined content similarity and Last.fm’s similarity, which
is likely based on CF. Combining the similarities of different
modalities is relatively easy and may work to some extent
in practice, but the similarity metrics are usually selected in
an ad hoc way.

1In subsequent part of this paper, we will use “hybrid
method” to refer to “hybrid collaborative filtering and
content-based method”.



To summarize, most existing content-based methods and
all hybrid methods use traditional features. This could change
with the advent of deep learning, which we will introduce in
the following section.

2.2 Deep learning
Deep learning methods mimic the architecture of mam-

malian brains. They can automatically learn features at
multiple levels directly from low-level data without resorting
to manually crafted features. We give a very brief introduc-
tion to deep belief networks (DBN), which will be used in
this work, and refer the readers to Bengio et al. [33] for a
more comprehensive review of deep learning techniques.

A deep belief network is a generative probabilistic graph-
ical model with many layers of hidden nodes at the top and
one layer of observations at the bottom. Connections are al-
lowed between two adjacent layers but not between the same
layer. Connections of the top two layers are undirected while
the rest are directed. Jointly training all layers is compu-
tationally intractable, so Hinton et al. [10] developed an
efficient algorithm to train the model layer by layer from
bottom to top in a greedy manner. This unsupervised train-
ing process is usually called pre-training. Afterward, the
DBN can be converted to a multi-layer perceptron (MLP)
for supervised learning. This stage is called finetune and is
usually implemented as back-propagation. It is also possible
to directly train a MLP using back-propagation without the
pre-training step, but this is prone to overfitting, especially
when the MLP is deep (has more than two hidden layers).
Pre-training may help by implicitly effecting a form of reg-
ularization [34].

2.3 Deep learning in music related tasks
The field of music information retrieval (MIR) has only

recently begun to embrace the power of deep learning. Lee
et al. [35] used a convolutional deep belief network to ex-
tract features in an unsupervised fashion for tasks such as
music genre classification. Results show that the automat-
ically learnt features significantly outperforms MFCC. In
Hamel et al. [7], deep belief network was used for music genre
classification and autotagging, with performance surpassing
that based on MFCC and MIM feature sets. In [36, 37],
Humphrey et al. proposed that the traditional two-stage
machine learning process — feature extraction and classi-
fication/regression — should be conducted simultaneously.
To classify the rhythm style of a piece of music, Pikrakis
applied DBN to engineered features representing rhythmic
signatures [38]. Schmidt et al. [39] found that DBN easily
outperforms traditional features in understanding rhythm
and melody based on music audio content. Other feature
learning techniques like sparse coding also started to be used
in music tasks. In [40], a sparse coding based approach was
used to learn interpretable audio features in an unsupervised
way, and good performance was achieved in music genre clas-
sification.

To the best of our knowledge, the first deep learning based
approach for music recommendation was almost concurrently
proposed by Oord et al. [41] within the last year. They first
conducted matrix factorization to obtain latent features for
all songs, and then used deep learning to map audio con-
tent to those latent features. Comparisons between their
methods and ours will be detailed later.

Symbol Description

u User u
v Song v
ruv The rating that user u gives to song v
γu The latent features for u estimated by MF
yv The latent features for v estimated by MF
βu User u’s preference of content features
µ All users’ common preference
xv The learnt content features for song v
Ω The parameters of DBN
U , V User and song sets, respectively
U , V The number of users and songs, respectively
I All user, song pairs in the training dataset

Table 1: Frequently used symbols

ruv

u = 1...U

γu yv

σR

σv

v = 1...V

σu

Figure 1: Probabilistic matrix factorization

To summarize, all content-based music recommendation
methods except [41] and all hybrid methods are based on
traditional features, which are not created for music rec-
ommendation. To enable simultaneous feature extraction
and recommendation, we will build a unified model for pure
content-based recommendation. We will also show that the
automatically learnt features can be applied to our efficient
hybrid method.

3. RECOMMENDATION MODELS
In this section, we will introduce our content-based model

and hybrid model, as well as the two baseline content-based
models with which to compare our models.

3.1 Collaborative filtering via probabilistic ma-
trix factorization

Collaborative filtering is a popular recommendation method.
The state-of-the-art CF methods are based on matrix fac-
torization (MF). A MF method named probabilistic matrix
factorization (PMF) [42] is used in this paper for its simplic-
ity, accuracy, and efficiency. In addition, PMF’s principled
probabilistic interpretation enables it to be extended to in-
corporate content information more easily.

PMF assumes that each user u ∈ U and song v ∈ V can be
represented as latent feature vectors γu and yv, respectively.
The rating that user u gives to song v is the inner product
of γu and yv. The training data is usually very sparse, and
without regularization the model is crippled by severe over-
fitting. Therefore, Gaussian priors are used for both γu and
yv as regularization. Formally, the model is specified as the
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Figure 2: Hierarchical linear model with deep belief
network

following2 (see graphical representation in Figure 1):

ruv|γu, yv, σR ∼ N
(
γ′uyv, σ

2
R

)
γu|σu ∼ N

(
0, σ2

uI
)

yv|σv ∼ N
(
0, σ2

vI
)

The negative log-likelihood of the model can be simplified
as Equation (1), where I is the user-song pairs in the training
set. λu and λv are usually tuned using a validation data
set [42].

LMF =
∑
u,v∈I

(
ruv − γ′uyv

)2
+ λu

∑
u

‖γu‖2 + λv
∑
v

‖yv‖2

(1)

Since a new user/song without rating data has no vector
representation in the model, their ratings cannot be pre-
dicted. This cold-start problem is endemic to all CF meth-
ods. In the following sections, we will introduce our solution
to the new-song problem.

3.2 Content-based Music Recommendation

3.2.1 Hierarchical linear model with deep belief net-
work (HLDBN)

We assume that the audio content of song v is fv, and
its automatically learnt feature vector is xv. User u’s music
preference is represented as a vector βu. The rating that
u gives to song v, denoted as ruv, is the inner product of
xv and βu. We use µ to represent all users’ common music
preference, which is the mean of all users’ βu-s. The model
(Figure 2) is formulated as:

ruv|βu, xv ∼ N
(
β′uxv, σ

2
R

)
βu ∼ N

(
µ, σ2

uI
)

xv = DBN (fv; Ω)

σu indicates the variance of user preferences. The smaller
the σu, the more similar the user preferences are to the com-
mon preference µ and the more strongly βu is regularized.
The Gaussian prior for βu models user common interests as
one cluster. However, users of different genders, ages and
different culture backgrounds could form different groups.

2N (a, b) is the normal distribution with mean a and variance
b. x ∼ p indicates that x satisfies the distribution p or x is
drawn/generated from p.

To capture this grouping effect, we could change the single
Gaussian prior to a mixture of Gaussians. We tried such
a prior and used Monte Carlo Expectation Maximization
to estimate the parameters, but it resulted in overfitting.
Therefore, we chose single Gaussian as the prior.

Automatic learning of features xv from music content fv
is achieved by deep belief network (DBN), which is briefly
introduced in Section 2.2 and 2.3. DBN can be treated as
a very flexible deterministic function that maps fv to xv.
It has hundreds of thousands, perhaps even millions, of pa-
rameters (denoted as Ω) to be learnt from training data. We
assume that ruv follows a normal distribution to account for
the noise in user ratings.3

Learning - Maximum Likelihood Estimation (MLE) is
used to train the model. The negative log-likelihood of the
model is shown in Equation (2), where irrelevant constants
are omitted. The hyperparameter λ is the ratio σ2

u/σ
2
R, with

a larger λ indicating stronger regularization.

LHLDBN =
∑
u,v∈I

(
ruv − β′uDBN (fv,Ω)

)2
+ λ

∑
u

‖βu − µ‖2

(2)

Since Ω consists of a large amount of parameters, directly
optimizing LHLDBN using gradient descent could easily
overfit. Following the DBN training procedure established
in [10], we first pre-train the DBN as stacked layers of Re-
stricted Boltzmann Machines in an unsupervised fashion and
then optimize LHLDBN using mini-batch stochastic gradi-
ent descent, where the gradient descent part of DBN is im-
plemented as back-propagation.4

Unlike traditional two-stage methods, our model automat-
ically and simultaneously optimizes audio features (xv) and
user preference parameters (βu-s). This provides a unified
and more principled method to content-based recommenda-
tion.

Prediction - After the learning phase, the rating that
user u gives to song v can be estimated as r̂uv = β′uDBN(fv,Ω).
As the predictions are based on audio content, new songs can
be recommended accurately as well.

3.2.2 Baseline models
We now turn our attention to the two content-based ap-

proaches proposed in Oord et al. and hereby used as our
baseline methods [41]. The models are based on convolu-
tional neural network (CNN), another popular deep learning
method. To make their approach directly comparable with
ours, we replace CNN with DBN while keeping the other
parts unchanged.

Content-based baseline model 1 (CB1) - This model
first uses PMF to learn latent features γu and yv for all users
and songs and then trains a DBN to map from audio content
to the latent features yv. Formally, the objective can be
formulated as:

min
Ω

∑
v

(yv −DBN (fv,Ω))2 (3)

3The normal distribution may be replaced with a softmax
or probit model. In this paper, we follow PMF and use the
normal distribution to keep the model clean.
4For the following DBN-based models, the same training
approach is used.



Let xv = DBN (fv,Ω); the rating that user u gives to song v
can be predicted as r̂uv = γ′uxv. This model, however, fails
because of a fundamental flaw shown in Theorem 1.

Theorem 1. Model CB1 does not minimize the sum of
squared errors of predicted ratings.

Proof. Let εv = yv − xv. The optimization objective
Equation (3) is equivalent to

min
Ω

∑
v

‖εv‖2 (4)

Instead of predicting the latent features, our true objective
is to predict ratings, so we actually need to minimize the
sum of squared errors of predicted ratings:

min
Ω

∑
u,v∈I

(
ruv − γ′uxv

)2
(5)

which can be transformed as:

min
Ω

∑
u,v∈I

(
ruv − γ′uxv

)2
= min

Ω

∑
u,v∈I

(
ruv − γ′u (yv − εv)

)2
= min

Ω

∑
v

εv

( ∑
u:u,v∈I

γuγ
′
u

)
ε′v + 2

∑
u:u,v∈I

γ′u
(
ruv − γ′uyv

)
εv

(6)

Since εv is not constrained because MLPs are universal ap-
proximators [43], we can see that Equation (6) and (4) have
different optimal solutions.

The original model in Oord et al. [41] uses weighted sum of
squared errors. Following the same approach, we can prove
that CB1 does not minimize the weighted version, either.

Content-based baseline model 2 (CB2) - This is the
other model proposed by Oord et al. [41]. It is presented as
the following,

min
Ω

∑
u,v∈I

(
ruv − γ′uDBN (fv,Ω)

)2
(7)

where γu is obtained from MF beforehand. Rating ruv is
predicted as γ′uxv, where xv = DBN (fv,Ω).

This model uses the correct objective and thus does not
have the issue of CB1 discussed in Theorem 1. However,
it lacks regularization on the parameters, which may cause
overfitting. We will show this empirically in Section 4.5.

Another issue of both CB1 and CB2 is that they are di-
rectly based on the results of MF and thus their prediction
results are strongly correlated with the collaborative filter-
ing (CF) results. As we will show in Section 4.5 and 4.6, this
hinders us from combining CB1 or CB2 with CF to form an
effective hybrid approach.

3.3 Hybrid CF and content-based music rec-
ommendation

Collaborative filtering and content-based methods use dif-
ferent information. To fuse all the information available for
more accurate predictions, we can combine the two in a hy-
brid method.

Information fusion has been studied extensively in other
domains such as sensor fusion and multimedia information

ruv

γuβu yv xvσβ

σγ σyµ

σR

u = 1...U v = 1...V

Figure 3: Hybrid recommendation

fusion. There are mainly two approaches for our problem.
Decision fusion combines the prediction results from existing
CF and content-based methods. On the other hand, data
fusion develops a new unified model to incorporate both CF
and audio content. Our hybrid method is based on the lat-
ter, but it also uses the features learnt by HLDBN.

In our hybrid model (Figure 3), we assume that the audio
features xv for every song is already known. γu, yv and
βu are not directly adopted from the results of PMF and
HLDBN but need to be jointly learnt from data. Rating ruv
is predicted by the sum of the CF part γ′uyv and the content
part β′uxv. The priors for γu and yv are set following the
PMF model, and βu the HLDBN model.

ruv|βu, xv, γu, yv, σR ∼ N
(
β′uxv + γ′uyv, σ

2
R

)
βu|σβ ∼ N

(
µ, σ2

βI
)

γu|σu ∼ N
(
0, σ2

γ

)
yv|σv ∼ N

(
0, σ2

y

)
(8)

The negative log-likelihood can be simplified as the fol-
lowing, where λβ = σ2

R/σ
2
β , λγ = σ2

R/σ
2
γ , and λy = σ2

R/σ
2
y.

LHybrid =
∑
u,v∈I

(ruv − β′uxv − γ′uyv)2 + λβ ‖β − µ‖2F

+ λγ ‖γ‖2F + λy ‖y‖2F

LHybrid is not a convex function, but if we fix any three of
βu, µ, γu, and yv, it is convex and the optimal solution can
be obtained in closed form. We thus optimize LHybrid using
the alternative least square (ALS) algorithm: we first set
the derivatives of LHybrid with respect to each of the four

parameters to zero and solve the equations, which results in
the following four updating formulas. We then iterate them
until LHybrid converges or until the prediction performance
on a validation set reaches the highest point.

βu ←

 ∑
v:u,v∈I

xvx
′
v + λβI

−1λβµ+
∑

v:u,v∈I

(
ruv − γ′uyv

)
xv


γu ←

 ∑
v:u,v∈I

yvy
′
v + λγI

−1 ∑
v:u,v∈I

(
ruv − β′uxv

)
yv


yv ←

 ∑
u:u,v∈I

γuγ
′
u + λyI

−1 ∑
u:u,v∈I

(
ruv − β′uxv

)
γu


µ ←

1

U

∑
u∈U

βu



To achieve faster convergence, γu, yv are first initialized
using PMF.

We could create a pure data fusion model by adding xv =
DBN(fv,Ω) after Equation 8, and optimizing Ω jointly with
other parameters. However, we found its performance infe-
rior to the one above.

4. EXPERIMENTS

4.1 Dataset
Deep belief network has a large number of parameters, and

a large amount of data is required to adequately train such
a model. We chose The Echo Nest Taste Profile Subset [9]
because it is the largest publicly available music recommen-
dation dataset as far as we know. The original dataset has
1, 019, 318 users, 384, 546 songs, and 48, 373, 586 listening
histories. We were able to crawl preview audio clips with
length of about half a minute from 7digital5 for 282, 508
of the songs. We selected the top 100, 000 users mainly to
reduce the training time.

Implicit feedback - From the Taste Profile Subset, we
know the songs that a user has listened to, so the dataset can
be presented as a set of (user, song) pairs. We assign a rating
of 1 to each pair and use them as the positive samples. To
generate negative samples, we use the well-established User-
Oriented Sampling method built in [44]: for user u who
listened to songs Vu, we randomly sampled |Vu| songs from
V\Vu and assign a rating 0 to each generated (user, song)
pair. We now have equal number of positive and negative
samples for every user.

Instead of using the sampling method described above,
HLDBN could theoretically use the weighted matrix factor-
ization method proposed in Hu et al. [45] to directly handle
the implicit feedback. While the method may be more accu-
rate, the computational overhead is prohibitive: there will
be about 2.83× 1010 rating data points, which can make all
algorithms about 1000 times slower and take years to finish.

Table 2 gives the statistics of the final dataset. The den-
sity of the rating matrix is only 0.1%.

Splitting the dataset - The dataset was then split into
5 disjoint sets: the training set, warm-start validation/test
sets, and cold-start validation/test sets. All users and songs
in the warm-start sets need to be in the training set. To
simulate the new-song problem, songs in the cold-start val-
idation/test sets cannot exist in the training set, while all
users in the cold-start sets still need to be in the training set
because the new user problem is not our focus. The statis-
tics of the five datasets are shown in Table 2, where WS and
CS stand for warm-start and cold-start, respectively.

Audio content preprocessing - We first converted all
audio clips to WAV files with mono channel, 8kHz sampling
rate, and 16 bit depth. We then randomly sampled a 5-
second continuous segment from each audio clip, because
directly using the half-minute clips requires too much mem-
ory and computation while segments shorter than 5 seconds
may lose too much information. We next converted each 5-
second segment into a 166×120 spectrogram (30ms window,
no overlap). PCA was then used to transform the spectro-
grams into vectors whose dimensions were ranked according
to their significance. The top-K dimensions were finally nor-
malized to have zero mean and unit variance and fed into

5http://7digital.com

# of users # of songs # of ratings

Total 100, 000 282, 508 28, 258, 926
Train 100, 000 262, 508 18, 382, 954

WS Valid 100, 000 262, 454 3, 939, 204
WS Test 100, 000 262, 457 3, 939, 206
CS Valid 99, 963 10, 000 1, 025, 654
CS Test 99, 933 10, 000 971, 908

Table 2: Dataset statistics

DBN. The normalization step is required because we use
Gaussian-Bernoulli RBM for the DBN’s input layer [46]. K,
the dimensionality of fv and the number of nodes of the
DBN’s input layer, is determined by a validation step.

4.2 Implementation and Training of deep be-
lief network

We implemented our DBN using Theano6, because it sup-
ports convenient GPU programming and automatic sym-
bolic differentiation. Since our input for DBN is continuous,
we used the Gaussian-Bernoulli RBM for the input layer and
binary RBMs for the rest [46].

Training DBN on CPUs is extremely slow. GPUs with
large memory are thus indispensable in the deep learning
experiments. Training and testing of every model takes
three to four days using a single GPU with 6GB GPU mem-
ory. Since DBN has many hyperparameters that could have
great impact on the prediction performance, tuning seems
unavoidable at this stage. Sequentially trying each configu-
ration of the hyperparameters on a single GPU is too time
consuming. We thus utilized a GPU cluster with 15 comput-
ing nodes, each of which containing two Tesla M2090 GPU
cards.

Mini-batch stochastic gradient descent was used as the
training algorithm. We cannot transfer all data into one
GPU because of its memory limit. Sequentially transferring
one batch after computing the previous batch is slow because
of the low bandwidth of the bus between the GPU memory
and main memory. Our solution is to use multithreading to
enable computing and transferring next batch at the same
time.

4.3 Evaluation Metrics
The Root Mean Square Error (RMSE) metric was used to

evaluate most models in this paper. It is defined as:

RMSE =

√∑N
i=1(r̂i − ri)2

N

where ri, r̂i are the true and predicted ratings, respectively.
We prefer RMSE to the truncated mAP used in the million
song dataset challenge [9] because our models are regression
models, for which RMSE is a more accurate and sensible
metric [9]. Moreover, RMSE is feasible in our case because
the sampling step in the preprocessing of the dataset de-
scribed in Section 4.1 have converted all implicit feedback
into explicit ratings.

For models which rank songs instead of predicting ratings,
we still resort to truncated mAP. mAP was originally widely
used in information retrieval to measure the ranking quality
of search results. Suppose the system recommends user u a

6http://deeplearning.net/software/theano/



list of songs lu,1,lu,2 . . . lu,M , we first define the precision-at-
k (Pk) metric as:

Pk(u, lu) =
1

k

k∑
i=1

ru,lu,i

Then we define the average precision as the following,

AP(u, lu) =
1

nu

M∑
k=1

ru,lu,kPk(u, lu)

where nu is the number of songs preferred by user u, i.e.
nu =

∑V
v=1 ru,v. Finally, mAP is defined as:

mAP =
1

U

U∑
u=1

AP(u, lu)

4.4 Probabilistic Matrix Factorization
Because CB1, CB2 and the hybrid method all depend on

the results of PMF, we trained several PMF models with
different configurations using the Alternative Least Square
algorithm. The training procedure was stopped when the
performance on the warm-start validation set converged. We
found that the best performance on the validation set was
achieved when the dimensionality of the latent features was
100 and λu = λv = 4. Further increasing the dimensionality
of the latent features brought little improvement.

The results for CF are shown in Table 4. We should note
that a rating predictor which randomly generates 0s or 1s
have RMSE = 0.707, and a mean predictor which constantly
gives 0.5s has RMSE = 0.5.

There is no result for PMF on the cold-start validation/test
sets, as PMF cannot recommend during the cold-start stage
(see Section 3.1).

4.5 Content-based music recommendation
Comparisons between deep learning based methods and

traditional features (e.g. MFCC) based methods have been
conducted in [41]. We avoid repeating those comparisons
and only compare HLDBN with CB1 and CB2.

Because the objectives for the warm-start and cold-start
scenarios are different, we discuss them separately in the
following two sections.

4.5.1 Warm-start
Evaluating the performance of a content-based model in

the warm-start stage is important for two reasons. First,
the warm-start stage is a crucial stage to a recommender.
Second, a content-based model performing well in the warm-
start stage would serve as a better building block for a good
hybrid model, whose performance in the warm-start stage is
determined by both the collaborative filtering part and the
content part. In the warm-start stage, all songs in the vali-
dation/test sets are in the training set. Therefore, whether
the content-based model generalizes to new songs or not is
not of our focus.

To determine the structure of DBN, we tried different
number of layers as well as different number of nodes for
each layer. For HLDBN, we finally used DBN with four lay-
ers (the input layer included), each containing 500 nodes. In-
creasing the number of nodes of each layer does not produce
better results. Unsupervised pre-training was conducted for
200 iterations. The mini-batch size for both pre-training

Warm start Cold start
Valid Test Valid Test

PMF 0.270 0.270 - -
HLDBN 0.323 0.323 0.477 0.478

CB1 0.679 0.679 0.688 0.669
CB2 0.325 0.325 0.495 0.495
Mean 0.500 0.500 0.500 0.500

Table 3: Predictive performance of CF and content-
based methods using DBN (Root Mean Squared Er-
ror).

and finetune is 5000. The learning rate for the Gaussian-
Bernoulli RBM is 5 × 10−5 and binary RBM 10−2. The
finetune learning rate of the supervised training stage is 0.5,
and the regularization parameter λ = 0.1. The finetune pro-
cess was stopped when the model’s predictive performance
on the warm-start validation set started to drop.

For CB1 and CB2, the number of nodes of their output
layer is determined by the dimensionality of the PMF’s la-
tent features, i.e. 100 (see Section 4.4). Other layers use the
same configuration as HLDBN.

The results of HLDBN, CB1, and CB2 are shown in Ta-
ble 3. Although HLDBN only slightly outperforms CB2, we
should notice that while CB2 is trained based on the results
of PMF, HLDBN is a unified model and does not rely on
PMF, which makes it easier to train and more principled.

The results also show that CB1 has RMSE larger than 0.5,
which is worse than the trivial mean predictor. In fact, the
RMSE of CB1 on the training set is also as large as 0.7, and
increasing the size of DBN does not lead to improvement.
These observations support our assertion in Section 3.2.2
that CB1 used the incorrect objective.

4.5.2 Cold-start
The major practical advantage of content-based methods

over CF is that content-based methods work even in the
new-song scenario. Thus an effective content-based model
should generalize well to new songs.

Most experimental settings are the same as those in the
warm-start evaluation except the configuration of DBN. Even
with pre-training, large DBN is prone to overfitting. We
tried many configurations and decided on using four layers,
each of which contains 300 nodes. Increasing the number of
input nodes makes the model overfit.

The results are shown in Table 3. We can see that HLDBN
outperforms CB1 and CB2 significantly. CB1 has very poor
results due to its incorrect objective function. CB2 performs
only slightly better than the mean predictor. We tried to
reduce the size of its DBN and also applied the deep convolu-
tional neural network directly on the spectrogram following
the same settings as [41] (the RMSEs of CB2+CNN on WS
Valid, WS Test, CS Valid, and CS Test are 0.325, 0.326,
0.492, and 0.492, respectively), but there were no signifi-
cant changes, which suggests that CB2 does not generalize
well. This could be due to the lack of proper regularization.
Therefore, among the three models, only HLDBN general-
izes to new songs.

4.6 Hybrid music recommendation
The focus of our hybrid method is to boost the recom-

mendation performance in the warm-start stage instead of
solving the new-song problem, for which we can simply fall



WS Valid WS Test

Hybrid w/ HLDBN 0.255 0.255
Hybrid w/ CB2 0.270 0.270

Table 4: Predictive performance of our hybrid
method with the features learnt by our HLDBN
model and the baseline CB2 model (Root Mean
Squared Error). WS stands for warm-start.

WS Valid WS Test

PMF 0.0109 0.0110
Hybrid w/ HLDBN 0.0132 0.0131

AM w/ traditional features 0.0108 0.0108
AM w/ features from HLDBN 0.0123 0.0120

Table 5: Comparison between hybrid methods us-
ing features learnt from HLDBN and traditional fea-
tures (mean Average Precision).

back to HLDBN. It is also possible to build a model to han-
dle both scenarios seamlessly, and we leave it as future work.

As CB1 performs worse than the trivial mean predictor, it
makes little sense to train a hybrid model based on its learnt
features. We thus only consider the hybrid methods based
on the features learnt by HLDBN and CB2. Table 4 shows
that the hybrid approach based on CB2’s features does not
bring any improvement over PMF’s results shown in Ta-
ble 3. This is because the content features learnt by CB2
are highly correlated with the latent features from PMF and
do not provide much new information. On the other hand,
HLDBN does not rely on PMF, and its learnt features have
incorporated audio content information that PMF fails to
take into account. The results show that HLDBN performs
significantly better than PMF.

To show that the learnt features are better than tradi-
tional features in hybrid music recommendation, the aspect
model (AM, introduced in Section 2.1), one of the two exist-
ing model-based hybrid music recommenders (Section 2.1),
was chosen as the baseline. Because AM ranks songs in-
stead of predicting ratings, we switched our evaluation met-
ric from RMSE to truncated mAP, for which the top-500
recommended songs were considered.

For AM, we first extracted a rich set of traditional fea-
tures. Marsyas [47] was used on the 30-second WAV files
described in Section 4.1. A window size of 512 was used
without overlapping. Descriptions about the features are
shown in Table 6. Because AM cannot handle continuous
features directly, we built a codebook using k-means based
on 8 million feature vectors from 10, 000 randomly sampled
songs. K-means was used instead of GMM in [2] mainly
for better efficiency. Hadoop7 was used to handle the large
amount of data and computation. Finally, feature vectors
of each song were quantized as codewords, which were fur-
ther aggregated into a vector with each element representing
occurrences of the corresponding codeword. Other parts re-
main the same as [2]. To use HLDBN’s learnt features in
AM, we also quantized the learnt features and aggregated
each song’s codewords into one vector.

The results of our hybrid method and AM are shown in
Table 5. We can see that AM with traditional features per-

7http://hadoop.apache.org/

Feature name Description

MFCC

Mel-Frequency Cepstral Coefficients. It

models the auditory perception system and is

widely used in speech and music domain.

Zero Crossings The rate of sign-changes along a signal.

Spectral Centroid
The “center of mass” of the spectrum.

Measures the brightness of the sound.

Spectral Flux

The squared change in normalized amplitude

between two consecutive time frames. It

measures how much the sound changes

between frames.

Spectral Rolloff
Measures the amount of the right-skewness of

the power spectrum.

Spectral Flatness

Measure

Measures how much the audio signal sounds

like a tone instead of noise.

Spectral Crest

Factor

Another measure of noisiness. Similar to

Spectral Flatness Measure.

Chroma

Pitch based feature. It projects the spectrum

into 12 bins, representing the 12 distinct

pitches of the chromatic musical scale.

Tempo Beats per minute

Table 6: Traditional audio features used

forms slightly worse than PMF. However, AM performs sig-
nificantly better with the features learnt by HLDBN. This
may suggest that the automatically learnt features are more
effective than the traditional features in hybrid music rec-
ommendation.

In addition, our hybrid method performs significantly bet-
ter than AM. The possible reasons could be: (1) our model
has regularization terms but AM does not; (2) our method
can directly use the features, but AM has to quantize feature
vectors, which results in information loss.

5. CONCLUSION
In this paper, we have described a novel model for content-

based music recommendation leveraging on deep belief net-
work and probabilistic graphical model. Instead of splitting
feature extraction and recommendation into separate steps,
our model unifies them in an automated process. Compared
with existing deep learning based models, our model out-
performs them in both the warm-start and cold-start stages
without relying on collaborative filtering. Based on the au-
tomatically learnt features, we created a hybrid collabora-
tive filtering and content-based recommendation method,
which not only significantly improves the performance of
CF but also outperforms the traditional feature based hy-
brid method.

As deep learning strives to provide a model for human
cognition, it has the potential to reveal many secrets behind
our preferences for music. Our study on HLDBN serves as a
mere starting point to tap into that potential. One practi-
cal future direction could be to further improve the recom-
mendation performance by explicitly modeling the temporal
structure of music content using deep recurrent neural net-
work [48]. Another interesting direction could be to inter-
pret the automatically learnt features to discover interesting
characteristics of music. Also, it may be interesting to take
advantage of recent advances in matrix factorization (e.g.
Lee et al [49]) by combining them with the deep learning
methods.
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E. GóMez, and P. Herrera, “Semantic audio
content-based music recommendation and
visualization based on user preference examples,” Inf.
Process. Manage., vol. 49, pp. 13–33, Jan. 2013.

[17] B. McFee, L. Barrington, and G. Lanckriet, “Learning
content similarity for music recommendation,” Audio,
Speech, and Language Processing, IEEE Transactions
on, vol. 20, pp. 2207–2218, Oct. 2012.

[18] N.-H. Liu, “Comparison of content-based music
recommendation using different distance estimation
methods,” Applied Intelligence, vol. 38, pp. 160–174,
June 2013.

[19] M. Schedl and D. Schnitzer, “Location-Aware Music
Artist Recommendation,” in MultiMedia Modeling
(C. Gurrin, F. Hopfgartner, W. Hurst, H. Johansen,
H. Lee, and N. O’Connor, eds.), vol. 8326 of Lecture
Notes in Computer Science, pp. 205–213, Springer
International Publishing, 2014.

[20] I. Porteous, A. Asuncion, and M. Welling, “Bayesian
Matrix Factorization with Side Information and
Dirichlet Process Mixtures,” in Proceedings of the
Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-10).

[21] L. M. de Campos, J. M. Fernández-Luna, J. F. Huete,
and M. A. Rueda-Morales, “Combining content-based
and collaborative recommendations: A hybrid
approach based on Bayesian networks,” International
Journal of Approximate Reasoning, vol. 51,
pp. 785–799, Sept. 2010.

[22] H. Shan and A. Banerjee, “Generalized Probabilistic
Matrix Factorizations for Collaborative Filtering,” in
Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pp. 1025–1030, IEEE, Dec. 2010.

[23] S. Park, Y. D. Kim, and S. Choi, “Hierarchical
Bayesian Matrix Factorization with Side Information,”
in Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI’13,
pp. 1593–1599, AAAI Press, 2013.

[24] D. Agarwal and B. C. Chen, “Regression-based latent
factor models,” in Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, KDD ’09, (New York, NY,
USA), pp. 19–28, ACM, 2009.

[25] R. Popescul and L. H. Ungar, “Probabilistic models
for unified collaborative and content-based
recommendation in sparsedata environments,” in UAI
2011, 2001.

[26] Q. Li, S. H. Myaeng, and B. M. Kim, “A probabilistic
music recommender considering user opinions and
audio features,” Information Processing and
Management, vol. 43, pp. 473–487, Mar. 2007.

[27] H. S. Del Castillo, “Hybrid Content-Based
Collaborative-Filtering music recommendations,”



Master’s thesis, University of Twente, The
Netherlands, 2007.

[28] M. Tiemann and S. Pauws, “Towards ensemble
learning for hybrid music recommendation,” in
Proceedings of the 2007 ACM conference on
Recommender systems, RecSys ’07, (New York, NY,
USA), pp. 177–178, ACM, 2007.

[29] J. Shruthi, S. Sneha, U. R. Shetty, and
D. Jayalakshmi, “A hybrid music recommender
system.”.

[30] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang,
and X. He, “Music recommendation by unified
hypergraph: Combining social media information and
music content,” in Proceedings of the International
Conference on Multimedia, MM ’10, (New York, NY,
USA), pp. 391–400, ACM, 2010.

[31] B. Shao, D. Wang, T. Li, and M. Ogihara, “Music
Recommendation Based on Acoustic Features and
User Access Patterns,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 17,
pp. 1602–1611, Nov. 2009.

[32] M. A. Domingues, F. Gouyon, A. M. Jorge, J. P. Leal,
J. . Vinagre, L. Lemos, and M. Sordo, “Combining
usage and content in an online music recommendation
system for music in the long-tail,” in Proceedings of
the 21st International Conference Companion on
World Wide Web, WWW ’12 Companion, (New York,
NY, USA), pp. 925–930, ACM, 2012.

[33] Y. Bengio, “Learning Deep Architectures for AI,”
Foundations and Trends in Machine Learning, vol. 2,
pp. 1–127, Jan. 2009.

[34] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol,
P. Vincent, and S. Bengio, “Why Does Unsupervised
Pre-training Help Deep Learning?,” J. Mach. Learn.
Res., vol. 11, pp. 625–660, Mar. 2010.

[35] H. Lee, Y. Largman, P. Pham, and A. Y. Ng,
“Unsupervised feature learning for audio classification
using convolutional deep belief networks,” in Advances
in Neural Information Processing Systems, 2009.

[36] E. J. Humphrey, J. P. Bello, and Y. LeCun, “Moving
Beyond Feature Design: Deep Architectures and
Automatic Feature Learning in Music Informatics,” in
13th International Society for Music Information
Retrieval Conference, 2012.

[37] E. Humphrey, J. Bello, and Y. LeCun, “Feature
learning and deep architectures: new directions for
music informatics,” Journal of Intelligent Information
Systems, vol. 41, no. 3, pp. 461–481, 2013.

[38] A. Pikrakis, “A deep learning approach to rhythm
modelling with applications,” in 6th International
Workshop on Machine Learning and Music (MML13),
2013.

[39] E. M. Schmidt and Y. E. Kim, “Learning rhythm and
melody features with deep belief networks,” in ISMIR,
2013.

[40] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun,
“Unsupervised Learning of Sparse Features for
Scalable Audio Classification,” in International Society
for Music Information Retrieval Conference, 2011.

[41] A. van den Oord, S. Dieleman, and B. Schrauwen,
“Deep content-based music recommendation,” in
NIPS, 2013.

[42] R. Salakhutdinov and A. Mnih, “Probabilistic Matrix
Factorization,” in Advances in Neural Information
Processing Systems, 2008.

[43] K. Hornik, M. Stinchcombe, and H. White, “Multilayer
feedforward networks are universal approximators,”
Neural Networks, vol. 2, pp. 359–366, Jan. 1989.

[44] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose,
M. Scholz, and Q. Yang, “One-Class Collaborative
Filtering,” in Data Mining, 2008. ICDM. Eighth IEEE
International Conference on, vol. 0, (Los Alamitos,
CA, USA), pp. 502–511, IEEE, Dec. 2008.

[45] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative
Filtering for Implicit Feedback Datasets,” in
Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, vol. 0 of ICDM ’08,
(Washington, DC, USA), pp. 263–272, IEEE
Computer Society, Dec. 2008.

[46] G. Hinton, “A Practical Guide to Training Restricted
Boltzmann Machines,” in Neural Networks: Tricks of
the Trade (G. Montavon, G. Orr, and K.-R. Müller,
eds.), vol. 7700 of Lecture Notes in Computer Science,
pp. 599–619, Springer Berlin Heidelberg, 2012.

[47] G. Tzanetakis and P. Cook, “MARSYAS: a framework
for audio analysis,” Org. Sound, vol. 4, pp. 169–175,
Dec. 1999.

[48] M. Hermans and B. Schrauwen, “Training and
analyzing deep recurrent neural networks,” in
Advances in Neural Information Processing Systems,
2013.

[49] J. Lee, S. Kim, G. Lebanon, and Y. Singer, “Local
Low-Rank matrix approximation,” in Proceedings of
the 30th Annual International Conference on Machine
Learning, 2013.


	Introduction
	Related Work
	Music recommendation
	Deep learning
	Deep learning in music related tasks

	Recommendation Models
	Collaborative filtering via probabilistic matrix factorization
	Content-based Music Recommendation
	Hierarchical linear model with deep belief network (HLDBN)
	Baseline models

	Hybrid CF and content-based music recommendation

	Experiments
	Dataset
	Implementation and Training of deep belief network
	Evaluation Metrics
	Probabilistic Matrix Factorization
	Content-based music recommendation
	Warm-start
	Cold-start

	Hybrid music recommendation

	Conclusion
	Acknowledgment
	References

