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Abstract

In recent years, multimodal fusion has emerged as a promising technology for effective multimedia

retrieval. Developing the optimal fusion strategy for different modality (e.g. content, metadata) has been

the subject of intensive research. Given a query, existing methods derive a unified fusion strategy for all

documents with the underlying assumption that the relative significance of a modality remains the same

across all documents. However, this assumption is often invalid. We thus propose a general multimodal

fusion framework, query-document-dependent fusion (QDDF), which derives the optimal fusion strategy

for each query-document pair via intelligent content analysis of both queries and documents. By investi-

gating multimodal fusion strategies adaptive to both queries and documents, we demonstrate that existing

multimodal fusion approaches are special cases of QDDF and propose two QDDF approaches to derive

fusion strategies. The dual-phase QDDF explicitly derives and fuses query- and document-dependent

weights, and the regression-based QDDF determines the fusion weight for a query-document pair via

a regression model derived from training data. To evaluate the proposed approaches, comprehensive

experiments have been conducted using a multimedia data set with around 17K full songs and over 236K

social queries. Results indicate that the regression-based QDDF is superior in handling single-dimension

queries. In comparison, the dual-phase QDDF outperforms existing approaches for most query types. We

found that document-dependent weights are instrumental in enhancing multimedia fusion performance.

In addition, efficiency analysis demonstrates the scalability of QDDF over large data sets.

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
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I. INTRODUCTION

W ITH the dramatic growth of multimedia information on the Internet, information retrieval has

emerged as a promising technology for large-scale multimedia exploration and data man-

agement. Since media documents (e.g., images, songs) generally contain information or cues from

various modalities (e.g., metadata, content), multimodal fusion, which combines multiple complementary

modalities, has become an effective approach to boost information retrieval performance. For example,

in a web retrieval system, web pages are retrieved by comparing both body texts and links to other

web pages [1]. A similar approach is also used in many multimedia search systems, where textual

metadata (e.g., titles, tags, descriptions) and content features (e.g., motion intensity, texture, timbre) are

combined to rank or rerank videos, images and songs [2], [3], [4], [5]. Recently, researchers have also

conducted benchmarking activities (e.g., MusiCLEF [6]) to promote multimedia access and retrieval using

multimodal methods.

The earliest multimodal fusion approach is query-independent fusion (QIF), which uses the same

fusion strategy for all incoming queries (e.g., [7], [8]). However, since different queries have different

information needs, using the same fusion strategy generally results in low retrieval accuracy. To address

this limitation, query-dependent fusion (QDF) was developed. The most straightforward QDF applies

different fusion strategies to different classes of queries (e.g., [2], [9]). Recent research has sought to do

so for each individual query (e.g., [10]). However, fusion strategies in both QIF and QDF take only query

dependence into consideration. Once a fusion strategy is determined for a given query, all documents

associated with this query use the same fusion strategy to combine different modalities.

Both QIF and QDF implicitly assume that the relative importance of a modality is the same across

all documents associated with a query. However, this is often not the case. As shown in Figure 1, given

a query “Male alternative”, two songs (song 1: “Karma Police”, song 2: “Pearly”) by Radiohead are

retrieved and ranked at different positions in the ranking lists by two retrieval experts (e.g., text matching

and content similarity measure as detailed in Section V-B). Looking further into the modalities of each

song, we find that the descriptive power of the same modality vary significantly between these two songs.
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For example, song 1 has as many as 61 tags (guitar, male vocalist, alternative rock, etc.), while song 2

has only two tags (“alternative” and “favorite”), which provide much less information. Therefore, other

modalities, such as content, would be more descriptive to song 2 (e.g., the relative importance between

content and text is 0.9:0.1) than to song 1 (e.g., 0.4:0.6). If we use the uniform fusion weight (w) derived

by QIF or the query-dependent weight (wq) derived by QDF, both songs, along with all other songs

in the ranking list, would fuse different modalities using the same weight. Therefore, QIF and QDF

fail to accurately reflect the contributions of different modalities to a song’s relevance with the query,

resulting in sub-optimal performance. Although in previous studies, such as Max, Min, CombMNZ [7],

and WSUM/WMNZ [11], a document’s ranking scores or occurrence frequency are used to adjust fusion

strategies, the performances of these approaches rely on that of each retrieval system and fail to address

whether document content can contribute to the final fusion strategy.

Hence, we investigate whether and how fusion strategy should adapt to both queries and documents.

Our preliminary work [12] proposed a document-dependent fusion (DDF) method and validated the

efficacy of applying document information in fusion strategy derivation. This paper goes beyond our

previous study in the following ways:

• We propose a general multimodal fusion framework, query-document-dependent fusion (QDDF),

which derives the optimal fusion strategy for each query-document pair by analyzing the content of

both queries and documents.

• Based on how fusion strategies adapt to queries and documents, we re-categorize existing multimodal

fusion approaches and demonstrate they are special cases of QDDF.

• We formalize a dual-phase approach for QDDF as well as a regression-based QDDF to directly

q: “Male alternative”
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Fig. 1. A retrieval and fusion example.
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learn the optimal fusion strategy for each query-document pair.

• A comprehensive evaluation is conducted to compare the retrieval performances of both dual-phase

QDDF and regression-based QDDF with existing approaches. Experimental results demonstrate the

effectiveness and efficiency of the proposed approaches.

The rest of the paper is organized as follows: Section II reviews different multimodal fusion approaches.

Section III introduces the QDDF framework and examines its relationship with other approaches. Sec-

tion IV introduces both the dual-phase and regression-based QDDF methods. Section V presents our

experimental configurations. Experimental results are provided and analyzed in Section VI. Section VII

concludes our work and proposes possible directions for future study.

II. RELATED WORK

A. Multimodal Fusion Overview

Multimodal fusion is generally performed at two levels: feature level and decision level [13], [14].

Feature-level fusion combines features extracted from different modalities before classification or ranking.

For example, combining audio and text (e.g., lyrics, tags, web documents) features has been widely

used in music genre classification (e.g., [15], [16]), mood classification (e.g., [17], [18]), and retrieval

(e.g., [19], [20]). Examples also exist beyond music domain, such as video analysis [14]. Most of these

works focus on exploring features of different modalities to enhance retrieval performance. By fusing

features together, multiple modalities generally assume equal importance. Decision-level fusion relaxes

the constraints on features and combines the output of different classifiers or ranking algorithms with

the flexibility of prioritizing different modalities using different weights. For instance, Laurier et al. [17],

Hu and Downie [18] combined audio- and lyrics-based systems using different combination weights and

evaluated the performance in classifying music into different moods. Mayer and Rauber [21] adopted

estimated accuracy as combination weights to combine audio- and lyrics-based classification results in

music genre classification. Decision-level fusion has also been widely used in meta search (e.g., [7],

[11]), video retrieval (e.g., [2]), etc.

At each fusion level, different fusion methods have been proposed and evaluated. For example, Kittler

et al. [22] provided a theoretical introduction to a number of rule-based fusion methods, such as linear

weighted fusion (sum or product), majority voting, AND/OR, etc. Linear weighted fusion combines

4
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information from different modalities in a linear fashion by assigning appropriately normalized weights

to different modalities. This method has become an effective tool in many multimedia applications,

such as video classification (e.g., [2]), image retrieval (e.g., [23]), music classification (e.g., [18]), etc.

A number of classification-based methods also fuse different modalities non-linearly. Examples include

the super-kernel method in video concept detection (e.g., [24], [25]) and the kernel-based partial order

embedding method in artist similarity measure (e.g., [26]). A comprehensive survey on multimodal fusion

can be found in [13]. In the following section, we will discuss linear weighted fusion methods at decision

levels in more detail.

B. Linear Multimodal Fusion Approaches

Previous studies on linear multimodal fusion can be categorized into two families: query-independent

fusion (QIF) and query-dependent fusion (QDF).

1) QIF: In the early development of multimodal fusion, QIF derived a unified fusion strategy and

applied it for all incoming queries and all related documents. The simplest fusion strategy is to weight

each modality equally, such as the CombSUM [7] and Average [8] methods in meta search. Other

methods such as Max, Min, and CombMNZ [7], all of which modify the equally weighted strategy using

document ranking scores or occurrence frequency, are also frequently used in meta search. In addition,

fusion strategies can be identified over validation sets. For example, Bartell et al. [27], [28] derived a

fusion strategy by maximizing the average performance over a broad range of queries in a validation

set. Mayer and Rauber [21] adopted the estimated accuracy on training data set as the fusion strategy to

combine audio and lyric modalities in music genre classification. By using the same fusion strategy for

every query, QIF assumes that different modalities make fixed contributions regardless of query types and

content. QIF remains simple and effective as long as queries are all limited to the same topic; otherwise,

it becomes inadequate.

2) QDF: QDF approaches seek to derive different fusion strategies for different queries. A basic

approach, class-based QDF, derives different fusion strategies for a number of query classes either defined

manually [2], [9], [29], or discovered automatically [30], [31], [32], [33]. Using language processing

techniques, an incoming query is then classified into one of these classes or represented as a mixture of

multiple classes [32]. Class-based QDF has been widely used and evaluated in video retrieval [2], [9],

5
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[30], [32], [33], [34], image retrieval [23], [29], and web retrieval [1] systems. However, its efficacy is

still constrained by the small number of query classes and the limited accuracy of query classification.

TABLE I
CLASSIFICATION OF MULTIMODAL FUSION APPROACHES BASED ON WHETHER FUSION WEIGHTS DEPEND ON QUERIES OR

DOCUMENTS.
Fusion Type Query Document Methods Example Works

QDIF × × Equal weight method CombSUM [7], Average [8],
Validation set-based method [27], [28], [21]
Class-based method [2], [9], [29], [30], [31], [32], [35],

QDF
√

× Difficulty prediction method [36], [37],
Regression-based method [10]

DDF ×
√ Document content-based method [12],

Rank score/occurrence-based method Max, Min, CombMNZ [7], [11]
QDDF

√ √
Query and document-based method This work

To address this weakness, Xie et al. [35] proposed the dynamic formation of query class. Each query is

linearly represented by its K nearest neighbors. However, the high computational cost for searching nearest

neighbors restricts its application in larger data sets. Yom-Tov et al. [36] proposed another approach that,

for a given query, predicts its ”difficulty” by statistically measuring performances of different retrieval

systems and weights them accordingly. Although this approach is effective, how to apply query difficulty

predictions to query adaptation awaits further investigation. Recently, QDF was modeled as a mapping

from each query to its fusion weight [10]. A regression model was trained to directly predict the fusion

strategy for each query, avoiding query matching and lowering computational complexity.

3) Summary: QIF and QDF only consider fusion strategy dependence on queries. Therefore, they

prioritize only the documents among which modalities have fixed importances and are thus sub-optimal

for other documents. Since the descriptive abilities of different modalities may vary considerably across

documents, our previous work [12] addressed this problem and confirmed the efficacy of incorporating

document dependence in fusion weight derivation. In this work, we introduce a general framework, query-

document-dependent fusion (QDDF), which takes the dependence of both queries and documents into

consideration when deriving the optimal fusion strategies.

6



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

III. QDDF FRAMEWORK AND ITS RELATION TO OTHER APPROACHES

A. QDDF Framework Overview

We now present the QDDF framework. Some frequent notations used in this and belows sections

are provided in Table II. Suppose a multimodal retrieval system contains n unimodal retrieval ex-

perts to search relevant documents on different modalities. Given a query qi from the query set Q =

{q1, q2, ..., qi, ...}, each retrieval expert returns a document list ranked by their relevances to the query. Let

TABLE II
TABLE OF NOTATIONS

Symbol Explanation
A·,j,k Descriptive ability of document d·,j on the k-th modality
di,j The j-th unique document returned for query qi
Di,k Document set returned by the k-th retrieval expert for query qi
Di A set of unique documents returned for query qi
D Document set
f(Vi,j) Regression function on Vi,j

gi,j Ground truth relevance of document di,j to query qi
l Loss function
m′ Number of samples chosen per iteration in Pegasos solver
M Keyword set in the music social query space
Mk A subset of M on the k-th music dimension
n Number of retrieval experts
qi A query
Q Query set
R·,j,k Relative score ratio for document d·,j on the k-th modality
Si,j Ranking score vector of document di,j
Ŝi,j Fusion score of document di,j
T,C Textual modality, content modality
Vi,j Feature vector of query-document pair (qi, di,j)

Wi,j Fusion weight for query-document pair (qi, di,j)

Ŵi,j The optimal fusion weight for query-document pair (qi, di,j)

Wi,· Query-dependent weight
W·,j Document-dependent weight
W·,· Query-document-independent weight
β Balance factor between query weight and document weight
η Learning rate in Pegasos solver

Di = {di,1, di,2, ..., di,j , ...} denote the set of unique documents associated with qi. For each document

di,j ∈ Di, a ranking score vector Si,j = [Si,j,1, Si,j,2, ..., Si,j,n]T can be computed according to how di,j

is relevant to qi on different modalities. To rank the documents, a fusion score Ŝi,j is calculated for each

7
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document di,j ∈ Di as:

Ŝi,j =

n∑
k=1

Si,j,kWi,j,k = WT
i,j · Si,j , (1)

where Wi,j = [Wi,j,1, ...,Wi,j,n]T (0 ≤ Wi,j,k ≤ 1 and
∑

kWi,j,k = 1) is the fusion weight (or fusion

strategy) that is applied to document di,j given query qi. Unlike existing approaches, Wi,j can be

theoretically different for every document and related query. Because fusion weights play a key role

in ranking the documents, deriving the optimal fusion weight Ŵi,j is a critical step in a multimodal

retrieval system.

B. Multimodal Fusion Approaches

Depending on whether fusion weights depend on queries or documents, multimodal fusion approaches

can be grouped into four classes: query-document-independent fusion (QDIF), query-dependent fusion

(QDF), document-dependent fusion (DDF), and query-document-dependent fusion (QDDF). Based on

this categorization, existing works can be summarized in Table I. As shown in this table, for some

QIF approaches reviewed in Section II, such as CombSUM [7] and Average [8], fusion strategy of

different retrieval experts is invariable to both queries and documents. Therefore, these approaches are

categorized into QDIF. An example of DDF can be found in [12] and its key idea is to combine document-

dependent weights with equal query weights. Other methods, such as Max, Min, CombMNZ [7], and

[11], whose fusion strategies rely on document ranking scores or occurrence frequency exclusively can

also be categorized into DDF.

As a general multimodal fusion framework, QDDF can be simplified to the other three types of

fusion approaches by relaxing the dependence on queries, documents, or both (Fig. 2). To examine

their relationships, we formalize them as different approaches to optimize fusion weights by minimizing

different loss functions between the ideal retrieval results and the predicted results.

1) QDDF: QDDF derives the optimal fusion weight for each query-document pair. Given query qi

and its associated documents Di, the optimal fusion weight Ŵi,j for di,j ∈ Di can be derived as:

Ŵi,j = argmin
Wi,j

l(qi, di,j , gi,j ,Wi,j) , (2)

8
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Fig. 2. Transitions between different multimodal fusion approaches.

where l(qi, di,j , gi,j ,Wi,j) denotes the loss function defined at document level, and gi,j is the ground truth

relevance of di,j to qi. The fusion weight Ŵi,j of QDDF enables every document to fuse its modalities

in the optimal way.

2) QDF: By relaxing the dependence on each document, QDF approaches derive the optimal fusion

weight for each query. All documents associated with this query use the same fusion strategy to combine

different modalities. We can formalize this procedure as:

Ŵi,j = Wi,· = argmin
Wi,j

|Di|∑
j=1

l(qi, di,j , gi,j ,Wi,j) , (3)

where Wi,· denotes a fusion weight invariable to documents, as Wi,j = Wi,j′ for any two unique

documents di,j and di,j′ (1 ≤ j, j′ ≤ |Di| and j 6= j′).

3) DDF: Similarly, DDF ignores the dependence of individual queries and learn a fusion weight which

relies only on the document. This document-dependent weight can be derived by summarily analyzing

the performances of all training queries:

Ŵi,j = W·,j = argmin
Wi,j

|Q|∑
i=1

l(qi, di,j , gi,j ,Wi,j) , (4)

where W·,j denotes the fusion weight invariable to queries.
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4) QDIF: QDIF ignores the dependence on both queries and documents. A constant fusion weight

can be derived and applied to all documents given every query.

Ŵi,j = W·,· = argmin
Wi,j

|Q|∑
i=1

|Di|∑
j=1

l(qi, di,j , gi,j ,Wi,j) . (5)

The weight invariability to both queries and documents is denoted by W·,·.

As a general framework, QDDF achieves the finest mapping from query/document to fusion weight

among these four approaches. When applying these approaches, fusion weights can be derived in different

ways to adapt to the difficulties of collecting ground truth relevance. In this paper, we mainly discuss

how QDDF learns fusion weights.

IV. FUSION WEIGHT LEARNING BY QDDF

Fig. 2 points to two possible approaches to derive fusion strategies of QDDF. The first is to combine

query-dependent weights with document-dependent weights. Therefore, we propose a dual-phase QDDF

approach by first deriving these weights separately and then combining them together. The second

approach is to directly derive fusion strategies by considering queries and documents simultaneously.

We thus extend the regression-based QDF approach [10] to QDDF by modeling fusion weight derivation

as a regression from query-document pairs to their fusion weights.

A. Dual-phase Fusion Weight Learning

As shown in Fig. 3, dual-phase QDDF consists of three main components: query-dependent weight

learning, document-dependent weight learning, and weight fusion. Since derivations of query-dependent

weights are well-known, we will only provide a step-by-step derivation of document-dependent weights

and explain its fusion with query-dependent weights.
1) Descriptive Ability and Music Social Query Space: Textual metadata and content are basic modal-

ities among most multimedia documents, and in this study we equally consider both for each music

dimension. Therefore, among the total n modalities, there are n/2 textual modalities and n/2 content

modalities. We define the descriptive ability for each modality as the extent to which it satisfies users’

information needs and derive document-dependent weights by assigning more weights to modalities

10
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with greater descriptive abilities. To quantify descriptive ability, we construct an online folksonomy-

based music social query space [10] to simulate users’ information needs in music retrieval. The data

information of this space in provided in Table III.

TABLE III
DATA INFORMATION OF THE MUSIC SOCIAL QUERY SPACE.

Dimensions No. of Tags Music Styles

Genre 244
Classical, Country, Electronic, HipHop,
Jazz, Metal, Pop, Rock

Mood 286 Angry, Joy, Pleasure, Sad
Vocalness 13 Female, Male, Mixed, Nonvocal
Instrument 454 Brass, Percussion, Strings, Woodwinds

2) Derive Descriptive Ability for Textual Modalities: Descriptive abilities for textual modalities are

calculated by matching document metadata (e.g., tags) with the music social query space. Let the indicator

function [w ∈ d·,j ] = 1 if a word w in the music social query space M appears in a document d·,j2;

otherwise let it equal to 0. The descriptive ability (A) of the k-th (k = 1, 2, . . . , n/2) textual modality

of d·,j is then defined as:

A·,j,Tk
=

∑
w∈Mk

[w ∈ d·,j ]∑
w∈M [w ∈ d·,j ]

, (6)

where T denotes the textual modality and Mk ⊂M denotes a set of words in the k-th music dimension.

3) Derive Descriptive Ability for Content Modalities: Because content modalities are not directly

comparable with the music social query space, we propose a relative-score-based method to calculate the

descriptive abilities for content modalities. We first generate a query set Q from the query space and then

retrieve relevant documents for each query using both text and audio retrieval experts (see Section V-B

2· denotes the independence to queries.

11
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for more details). For each unique document d·,j , we record its ranking score Si,j,k in the k-th ranked

list for every qi and sum it for all the queries. The average score for the k-th (k = 1, 2, . . . , n) modality

of document d·,j is:

S̄·,j,k =

|Q|∑
i=1

Si,j,k/

|Q|∑
i=1

[d·,j ∈ Di,k] . (7)

Given qi, if the document set Di,k returned by the k-th retrieval expert contains document d·,j , [d·,j ∈ Di,k]

is set to 1, otherwise 0.

The average score of a modality approximates its importance to a document. For each music dimension,

the relative score between textual and content modalities can be used to derive their relative importance.

Thus, the descriptive ability for the k-th (k = 1, 2, . . . , n/2) content modality of document d·,j is computed

as:

A·,j,Ck
= R·,j,kA·,j,Tk

, (8)

where C denotes the content modality and R·,j,k the content-to-text ratio based on the average score of

the content modality and that of the textual modality. When an average score is zero, possibly as a result

of unbalanced query samples or mismatch between queries and documents on a modality, R·,j,k is set to

1.

4) Document-Dependent Weight Learning: Given the descriptive abilities of all the modalities of a

document, document-dependent weights are derived by linearly assigning more weights to modalities with

greater descriptive abilities. Assume W·,j,Tk
and W·,j,Ck

are the weights for the k-th (k = 1, 2, . . . , n/2)

textual and content modalities of document d·,j , the document weight vector is represented as W·,j =

[W·,j,T1
, ...,W·,j,Tn/2

,W·,j,C1
, ...,W·,j,Cn/2

]T , where W·,j,Tk
= αA·,j,Tk

, W·,j,Ck
= αA·,j,Ck

, and α is a

normalization factor which can be calculated by solving:

n/2∑
k=1

(W·,j,Tk
+W·,j,Ck

) = 1 . (9)

5) Weight Fusion: The document-dependent weight W·,j and the query-dependent weight Wi,· can

be fused in various ways, such as the multiplication method [12]. In this paper, the fusion weight Ŵi,j =

[Wi,j,1, ...,Wi,j,n]T is calculated by combining them linearly.

Wi,j,k = βWi,·,k + (1− β)W·,j,k , (10)

12
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where k = 1, 2, . . . , n and β is a parameter to balance the contributions of query and document weights.

By incorporating document-dependent weights, the relative significance of different modalities, such

as tags and audio of the example songs in Section I, can be used to fine tune query-dependent weights

and lead to better multimodal fusion results.

B. Regression-based Fusion Weight Learning

Sampled Queries

Sampled

 Queries

Testing Query
Ranked Lists

Multimodal Retrieval Results

R-QDDF Model 
Training

Ranked Lists

Offline

Online

R-QDDF Model

Weight 
Prediction

Music Social 

Query Space

Multimodal Search Engine

Retrieval Expert N

Retrieval Expert 2

Retrieval Expert 1

Fig. 4. Regression-based fusion weight learning diagram

1) Model Definition: Fusion weight derivation of QDDF can be modeled as a regression function from

query-document pairs to their fusion strategies (Fig. 4). A textual query is represented as a document

vector [38] over a vocabulary of words in the music social query space, with 1 and 0 denoting the

presence and absence of a word in the query. For each document, a tf-idf weight vector is constructed

to represent its metadata information. Its content information is represented as a fuzzy music semantic

vector (FMSV), which is a probability vector obtained using a multi-class support vector machine (SVM)

to classify multiple audio features [20]. A feature vector Vi,j combining query and document features

is then constructed for the query-document pair (qi, di,j), and the optimal fusion strategy of (qi, di,j)

is denoted as Ŵi,j = [Wi,j,1,Wi,j,2, ...,Wi,j,n]T . Fusion weight derivation can thus be modeled as a

multiple regression Ŵi,j = f(Vi,j), which can be further decomposed into n single regression models

that correspond to n retrieval experts Wi,j,k = fk(Vi,j). Finally, the weights predicted from single

regression models are normalized and combined as the final fusion strategy.

Support Vector Regression (SVR) is one of the most powerful and widely adopted regression methods.

We assume that each single regression model here fits the SVR model, y = 〈w,x〉+b [39]. Let x = Vi,j

and y = Wi,j,k. Given a training dataset (see Section V-C for more details) with m samples, i.e.,

U = {(xi, yi) | i = 1, 2, . . . ,m}, a single regression model is solved by minimizing the following

13
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objective function:

f(w) =
λ

2
‖w‖2 +

1

m

∑
(x,y)∈U

`(w; (x, y)) , (11)

where λ is a regularization factor and

`(w; (x, y)) = max{0, |y − 〈w,x〉| − ε} (12)

is the ε-insensitive empirical loss function.

2) Regression Solver using Pegasos: To solve Eq. 11, we employ the regression Pegasos [10], which

performs t iterations and randomly selects m′ samples to compute the sub-gradient at each iteration.

Initially, w1 is set to a zero vector. At each iteration i, using the set U ′i ⊆ U with m′ chosen samples,

we obtain the following function to approximate Eq. 11.

f(w;U ′i) =
λ

2
‖w‖2 +

1

m′

∑
(x,y)∈U ′

i

`(w; (x, y)) . (13)

Next, wi is updated in two steps. First, the weight vector wi+ 1

2
is formulated as:

wi+ 1

2
= wi − ηi5i , (14)

where ηi = 1/(λi) is the learning rate,

5i = λwi −
1

|U ′i |
∑

(x,y)∈U+
i

sign(y − 〈wi,x〉)x (15)

is the sub-gradient of f(w;U ′i) at wi, and U+
i is a sample set for which w has a non-zero loss. Then

wi+ 1

2
is projected onto the set {w | ‖w‖ ≤ 1√

λ
} which contains the optimal w. Consequently,

wi+1 = min{1, 1/(
√
λ‖wi+ 1

2
‖)}wi+ 1

2
. (16)

The weight after a predefined number of iterations is output as the final weight.

With the trained regression models, the fusion weight for a query-document pair can be directly pre-

dicted. This approach jointly considers the dependence of queries and documents, The relative significance

of different modalities does not need to be explicitly studied. Therefore, it can be better generalized to

different multimedia documents in various retrieval systems.

14
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V. EXPERIMENTAL CONFIGURATION

A. Data Collection

Since most existing benchmarking data sets lack ground truth annotations on multiple music dimen-

sions, we adopt the music data set which was previously annotated and used in [10] to evaluate our

proposed approaches. This data set consists of two main components:

1) Music Collection: It contains 17174 music tracks along with their metadata, including titles,

descriptions, keywords, comments and tags. While tags were crawled from Last.fm, audio tracks and the

other metadata were crawled from YouTube using their open APIs. Four music dimensions were studied,

including genre, mood, instrument and vocalness. Socially tagged ground truth annotations involving

four music dimensions in 20 music styles (Table III) were collected and crossed checked by amateur

musicians with reference to Last.fm.

2) Query Collection: To assess retrieval performance using various numbers of modalities, queries

related to different music dimensions were generated by sampling tags from the music social query

space. The probability of each tag being sampled grows linearly with its popularity. Since four music

dimensions are involved, each generated query contains at most four tags from different dimensions. This

also guarantees that tags with conflicting meanings, e.g., “happy sad”, will not appear concurrently in

a query. According to the number of related music dimensions, the generated queries range from low

complexity (with tags from only one dimension) to high complexity (with tags from multiple dimensions)

to simulate different complexities of users’ information needs. A total of 236973 queries are generated,

examples including “violin”, “classical piano”, “jazz saxophone male”, “happy classical violin female”,

etc. Table IV presents the overall categorization and quantity information of these queries.

TABLE IV
SOCIAL QUERY DISTRIBUTION OVER DIFFERENT MUSIC DIMENSION COMBINATIONS. G, M, V, I REPRESENT GENRE, MOOD,

VOCALNESS AND INSTRUMENT DIMENSIONS. QUERIES ARE GROUPED ACCORDING TO THEIR RELATED MUSIC
DIMENSIONS. NO. INDICATES THE NUMBER OF QUERIES IN EACH GROUP.

1-dimension 2-dimension 3-dimension 4-dimension
Query No. Query No. Query No. Query No.
G 158 GM 13165 GMV 19209 GMVI 106642
M 173 GV 2546 GMI 21395
V 13 GI 13373 GVI 19305
I 309 MV 2951 MVI 19658

MI 13783
VI 4293

15
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B. Multimodal Retrieval Experts

We consider both textual and audio modalities for each music dimension, and a unimodal retrieval

expert is constructed on each modality. Every incoming query (e.g., “male alternative song”) is parsed

by comparing with the music social query space, and query keywords (e.g., “male” and “alternative”)

are then fed to the corresponding text and audio retrieval experts.

1) Text Retrieval Experts: A text retrieval expert retrieves relevant music items by matching a query

keyword with the metadata (e.g., tags) of these music items. We adopted the vector space model [40] to

represent music metadata, by tokening metadata, eliminating stop words, and stemming using Porter’s

algorithm [41]. Each music item is then represented as a tf-idf weight vector. Given a query keyword,

the OKAPI BM-25 method [42] is applied to rank different music items.

2) Audio Retrieval Experts: An audio retrieval expert retrieves music items that match a query keyword

in the audio dimension. For each audio track, multiple audio features (e.g., timbral, spectral, rhythmic

features) are first extracted [20]. A multi-class SVM is then used to classify these features into different

music styles within different music dimensions. The activation probabilities of a track being classified

into different music styles form a fuzzy music semantic vector (FMSV). For every query keyword, a

query FMSV is generated by assigning the value of 1 to the matched music style and 0 to the others.

For example, the query keyword “male” will result in a FMSV with only the music style “Male” in the

“Vocalness” dimension being 1 and others 0. Euclidean distance is calculated between the query FMSV

and the FMSVs of all the audio tracks. A ranked list is constructed by sorting tracks in an ascending

order of their Euclidean distances. The audio analysis was implemented based on Marsyas [43].

3) Result Fusion and Multi-Valued Relevance: Given multiple ranked lists, the ranking score Si,j,k of

music item di,j in the k-th ranked list is calculated as Si,j,k = 1−Rankk(di,j)/N , where N , the number

of music items studied in each ranked list, is set to 100 in our experiment. When a fusion strategy is

available, ranking scores from different retrieval experts are linearly combined (Eq. 1) to rank music

items into a final result list.

The performance of a final ranked list is measured by examining the relevance of every music item

with the query. Instead of using binary relevance (1 for relevant, 0 for irrelevant), we use multi-valued

relevance to address the partial match between a music item and a query. This relevance is defined as

the number of matched dimensions over the total number of dimensions required by the query.
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C. Evaluation Methodology

To evaluate the effectiveness of the proposed framework, different types of multimodal fusion ap-

proaches are implemented and compared. Average precision (AP) is used to measure the retrieval per-

formance of a ranked list and mean average precision (MAP) the performance over all testing queries.

Moreover, efficiency (measured by runtime) of different QDDF approaches is also analyzed.

1) Comparison Approaches: We compared QDDF with the other three types of fusion approaches,

including one QDIF approach, one DDF approach, and four QDF approaches.

QDIF was implemented by applying the same fusion strategy for all training queries and their associated

music items. Grid search was then used to find the optimal fusion strategy which achieves the highest

retrieval accuracy. DDF was implemented by integrating document-dependent weights with the above

QDIF approach [12].

For QDF, we implemented: a class-based QDF approach based on single-class query matching (QDF-

Single) [30]; another class-based QDF approach based on mixture-of-classes query matching (QDF-

Mixture) [32]; a dynamic-class-based QDF approach which matches a query using K nearest neighbors

(QDF-KNN) [35]; and a regression-based QDF approach which predicts a fusion strategy for each query

using a regression model (QDF-Reg) [10].

For QDDF, we implemented both the dual-phase QDDF (D-QDDF) and the regression-based QDDF

(R-QDDF). D-QDDF was implemented by integrating document-dependent weights with each of the four

QDF approaches.

Since our focus was multimodal fusion using unimodal retrieval systems, we did not consider ap-

proaches that are used mainly in meta search.

2) Training and Evaluation: To train and test QDF approaches, ground truth weights need to be

obtained for every query in the data set (Section V-A2). For each query, grid search was applied to find

the fusion weight which produces the highest AP. This weight (also termed oracle combination weight) is

used as the ground truth weight. However, grid search is too computationally complex for R-QDDF as it

requires ground truth weight for every query-document pair. Therefore, in R-QDDF, the training weight

for query-document pair (qi, di,j) was derived by solving a constrained linear least square problem based
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on comparing the predicted relevance with its ground truth relevance gi,j :

l(qi, di,j) =
1

2
(WT

i,j · Si,j − gi,j)2 . (17)

Having obtained the ground truth weights of all queries, we randomly sampled 200K queries as the

training data set. The remaining 36973 queries were used for both validation and testing.

Since many multimodal fusion approaches involve training, training data set availability or the effort

of constructing such training data sets is a critical concern in real life multimodal retrieval systems.

Therefore, it is worthwhile to study the performance when different amounts of training data are available.

In our experiments, we randomly selected different numbers (0.1K, 0.4K, 1.6K, 6.4K, 25.6K, 102.4K, and

200K) of queries from the 200K query bank to form different training data sets. The performances when

different approaches were trained using these training data sets were examined. For R-QDDF, the training

samples are the query-document pairs generated by combining every query and its associated documents.

A random sampling (with a sampling rate of 1/100) was performed among the query-document pairs of

every query in the training data sets. However, for clearer comparison, we used the same notations for

training sizes when presenting the results of R-QDDF with other methods.

Evaluation was first performed on validation data sets to determine the optimal parameter settings,

which were then used for testing. For robust parameter tunning, the 36973 samples were equally divided

into four subsets, and each subset took turns being used as the validation data set, while the others were

used for testing. MAP was computed over all tested samples and then averaged across different folds

for presentation. Since three trials of random sampling were performed for training R-QDDF models,

the presented R-QDDF results for both validation and testing are the averages across different trials. The

average runtime of both D-QDDF and R-QDDF were also collected. All the experiments were conducted

on a DELL Optiplex 755 PC, with a dual-core CPU (Intel Core 2 E6550 @ 2.33GHZ) and 4GB memory.

VI. RESULTS AND ANALYSIS

A. Dual-phase QDDF (D-QDDF)

Since D-QDDF was implemented by integrating document-dependent weights with QDF approaches,

its performance may be affected by two factors: (1) the different QDF approaches to derive query-

dependent weights and (2) the different methods used to fuse them. We thus compared the performance
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of D-QDDF based on four QDF approaches using both linear fusion (D-QDDF-LNR, in Section IV-A5)

and multiplication fusion methods (D-QDDF-MUL) [12].
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Fig. 5. Retrieval accuracy (MAP) comparison of D-QDDF-LNR approaches (trained with the data set of 200K) using different
β.

1) On Effects of Parameter Tuning: We first implemented four QDF approaches and evaluated each

one using different parameter settings on the validation sets. For class-based QDF approaches, different

numbers (10i, i = 1, 2, . . . , 6) of query classes were generated based on oracle combination weights.

Different numbers (5i, i = 1, 2, . . . , 5) of nearest neighbors were tested for QDF-KNN. For QDF-

Reg, m′ = 1, 2, . . . , 32 training samples were tested to compute the sub-gradient at each iteration. The

parameters yielding the best performance on validation sets were adopted: QDF-Single adopted one out

of 40 query classes, QDF-Mixture used top 10 out of 50 query classes, QDF-KNN adopted 5 nearest

neighbors, and m′ was set to 5 in QDF-Reg.

We then fused said QDF approaches with document-dependent weights to form their respective D-

QDDF approaches. We tested different β (Eq. 10) values (β = 0, 0.1, . . . , 1) to examine the importance

of query- and document-dependent weights in the fusion process. As shown in Fig. 5, the performances

of all D-QDDF-LNR approaches (using the training data set of 200K) follow a similar trend as β varies

and reach the optimum at β = 0.9. The same optimum was observed using training data sets of different

sizes. This importance factor reflects the primary role of query-dependent weights in the retrieval process

but also illustrates the necessity for document-dependent weights in improving fusion strategy. In the

following experiments, β is set to 0.9.
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Fig. 6. Retrieval accuracy (MAP) comparison between D-QDDF and QDF approaches. (a) ∼ (d) show that by integrating
document dependence how much D-QDDF approaches improve upon the four QDF approaches. (e) and (f) compare the
performance of D-QDDF-MUL and D-QDDF-LNR approaches based on different QDF approaches.

2) D-QDDF Evaluation: We tested the performances of D-QDDF-LNR and D-QDDF-MUL with

training data sets of different sizes. As shown in Fig. 6 (a) ∼ (d), by integrating document-dependent

weights, the performances of QDF-Single, QDF-Mixture, and QDF-KNN are improved by 2.2%, 1.9%,

and 5.5%, respectively, using D-QDDF-LNR, and by 2.2%, 1.2%, and 6.2%, respectively, using D-QDDF-

MUL. D-QDDF-LNR outperforms QDF-Reg when using training data sets of all sizes with an average

improvement of 1.7%. On the other hand, D-QDDF-MUL improves upon QDF-Reg by as much as 3.7%

when using the training data set of 0.4K and performs as well as QDF-Reg when the size of training

data set reaches 6.4K. However, as shown in our later experiment (Table V), when further comparing

their performances with respect to query types, QDDF approaches can outperform QDF-Reg for most

types of queries.

The performances of all approaches follow an overall ascending trend as the size of training data set

grows. For example, having more training samples consistently yields better regression models for both

QDF-Reg and the D-QDDF approaches based on QDF-Reg. The performances of QDF-Single, QDF-

Mixture, and QDF-KNN were not always enhanced with larger data sets as their fusion weights are

determined by a class or several classes of queries. By introducing document-dependent weights, both
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D-QDDF-MUL and D-QDDF-LNR exhibit similar performance fluctuations with the corresponding QDF

approaches over different training data sets. This can be explained by the dual-phase learning procedure.

Document-dependent weights, which capture the importance of different modalities of a document, can

be considered as an intrinsic characteristic of a document and is independent of how query-dependent

weights are derived. Therefore, integrating document-dependent weight does not affect the variances in

performance caused by different query training data sets.

Fig. 6 (e) and (f) compare the retrieval performances of D-QDDF-MUL and D-QDDF-LNR, respec-

tively, based on different QDF approaches. We observe that D-QDDF approaches based on QDF-Reg

achieve the best performances in both cases and are thus used in our later experiments.

B. Regression-based QDDF (R-QDDF)
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Fig. 7. Retrieval accuracy (MAP) of R-QDDF (trained with the data set of 200K) using different regularization factors (λ)
and numbers of chosen samples per iteration (m′).

1) On Effects of Parameter Tuning: We examined R-QDDF’s performance using different regulariza-

tion factors (λ = 0.0001, 0.001, 0.01) and with different numbers of samples (m′ = 2i, and i = 0, 1, . . . , 5)

in each iteration the validation data sets. Fig. 7 compares the performance of R-QDDF (using training

data set of 200K) under different parameter settings and indicates that it is influenced by both factors.

As m′ increases, the performance shows a roughly growing trend. The smoothness of this growth can

be influenced by different regularization factors. For example, after m′ reaches 4, R-QDDF performs

relatively smoothly for λ = 0.01 and λ = 0.001, but changes dramatically for λ = 0.0001. Grid search

determined that the optimal values of λ and m′ to be 0.001 and 8, respectively, for all sizes of training
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TABLE V
RETRIEVAL ACCURACY (MAP) OF QDDF, QDF, DDF, AND QDIF WITH RESPECT TO QUERY TYPES WHEN THE SIZE OF

TRAINING DATA IS 200K. G, M, V, I REPRESENT THE FOUR MUSIC DIMENSIONS: GENRE, MOOD, VOCALNESS, AND
INSTRUMENT. ALL INDICATES ALL QUERY TYPES. BOLD VALUE REPRESENTS THE HIGHEST MAP AMONG ALL METHODS

GIVEN A QUERY TYPE.

Method All G M V I GM GV GI MV MI VI GMV GMI GVI MVI GMVI
D-QDDF-LNR .327 .639 .486 .562 .848 .326 .349 .438 .398 .447 .474 .284 .304 .326 .347 .258
D-QDDF-MUL .323 .647 .480 .559 .852 .325 .353 .440 .388 .447 .481 .273 .298 .328 .342 .252
R-QDDF .310 .663 .487 .605 .913 .294 .306 .427 .378 .427 .467 .258 .280 .310 .329 .246
QDF-Reg .324 .647 .472 .551 .843 .317 .343 .441 .386 .440 .471 .280 .301 .324 .343 .254
DDF .315 .643 .488 .569 .847 .314 .329 .435 .390 .437 .470 .263 .288 .318 .335 .245
QDIF .311 .653 .473 .555 .844 .283 .297 .433 .374 .430 .469 .257 .287 .323 .331 .247

TABLE VI
IMPROVEMENT t-TEST OF QDDF APPROACHES (D-QDDF-LNR, D-QDDF-MUL, R-QDDF) OVER QDF-REG, DDF, AND
QDIF WITH RESPECT TO QUERY TYPES WHEN THE SIZE OF TRAINING DATA IS 200K. G, M, V, I REPRESENT FOUR MUSIC

DIMENSIONS: GENRE, MOOD, VOCALNESS, AND INSTRUMENT. ALL INDICATES ALL QUERY TYPES. + OR - INDICATE QDDF
APPROACHES IMPROVE OR DETERIORATE THE PERFORMANCES OF THE OTHER APPROACHES. < REPRESENTS p < 0.05,

WHILE > MEANS p > 0.05.
Method Compared to All G M V I GM GV GI MV MI VI GMV GMI GVI MVI GMVI

D-QDDF-LNR
QDF-Reg +< -< +< +< +< +< +< -> +< +< +> +< +> +> +< +<
DDF +< -> -> -< +> +< +< +> +< +< +< +< +< +< +< +<
QDIF +< -< +< +< +< +< +< +< +< +< +< +< +< +> +< +<

D-QDDF-MUL
QDF-Reg -> +> +< +< +< +< +< -> +> +< +< -< -> +< -> ->
DDF +< +< -< -< +< +< +< +< -> +< +< +< +< +< +< +<
QDIF +< -< +< +< +< +< +< +< +< +< +< +< +< +< +< +<

R-QDDF
QDF-Reg -< +< +< +< +< -< -< -< -< -< -> -< -< -< -< -<
DDF -< +< -> +< +< -< -< -< -< -< -> -< -< -< -< +>
QDIF -> +< +< +< +< +< +< -< +< -> -> +> -< -> -> ->

data sets. The overall performance variances (using the training data set of 200K) are 0.262× 10−6 and

0.026× 10−6 across different validation folds and trials of random sampling, respectively.

2) R-QDDF Evaluation: We then tested the performances of R-QDDF using different sizes of training

data sets and queries with different complexities.

0.1 0.4 1.6 6.4 25.6 102.4 200
0.2

0.3

0.4
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0.7

Training samples (x3.4x10
5
)
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All queries

1−dimension queries

2−dimension queries

3−dimension queries

4−dimension queries

Fig. 8. Comparison of retrieval accuracy (MAP) given different query complexities when R-QDDF is trained with data sets of
different sizes.

As shown in Fig. 8, the overall retrieval accuracy reveals a smoothly ascending trend as the training
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data size grows, which is consistent with the regression-based learning principles. Given queries with

different complexities, the retrieval accuracy shows a similar growing trend across different training data

sets. Moreover, as the query complexity increases, the performance of R-QDDF decreases. In addition to

R-QDDF, we observe the same phenomenon for all tested approaches (Table V). This is mainly because

of the requirement to match more dimensions and the increasing sparsity of annotated ground truth

relevance for complex queries. Since the training weights of R-QDDF were generated by comparing

fusion scores with their ground truth relevance (Eq. 17), sparse and incomplete ground truth annotations

result in sub-optimal training weights. R-QDDF based on different trials of random sampling shows

similar performance. When using the training data set of 200K, the overall performance variances are

0.210× 10−6 and 0.124× 10−6 across different folds and trials, respectively.

C. QDDF vs. Other Approaches

Table V compares the retrieval accuracy of the proposed QDDF approaches along with the three

existing methods (QDF, DDF and QDIF) given various query types. The data shows the performance

of the approaches under the best parameter settings as determined by the evaluation (Section VI-A and

Section VI-B). Using t-test, we assess whether each QDDF approach significantly improves (indicated

by +<) upon QDF-Reg, DDF, and QDIF (Table VI).

We first observe that integrating query dependence or document dependence can both improve the

retrieval performance. Among these three existing methods, QDF-Reg and DDF both outperform QDIF,

with QDF-Reg achieving the best overall performance. While QDIF produces better higher MAPs for

single dimension queries than QDF-Reg, the latter outperforms QDIF for all types of multi-dimension

queries and does so significantly in all but two cases. DDF significantly improves QDIF for 11 out

of 15 query types without bias towards the query types being tested, since document dependence is

independent of query types. The comparison between QDF-Reg and DDF highlights the significance of

document dependence in the fusion process especially for simple queries, for which DDF outperforms

QDIF for all but one query type while QDF-Reg is outperformed in all cases.

When considering both query dependence and document dependence, we can observe that most of the

best performance is achieved by QDDF approaches. D-QDDF-LNR and D-QDDF-MUL can significantly

(Table VI) improve QDF-Reg, the best baseline method, by an average of 1.7% and 1.0%, respectively,
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over all training data sets. The improvements of D-QDDF-LNR over DDF and QDIF can reach 3.8% and

5.1%, respectively. Overall, D-QDDF-LNR achieves the best performance among all tested approaches

across both simple queries and complex queries. Regardless of the fusion strategy used, D-QDDF can

achieve a finer mapping from query/document to fusion weight and thus yield fusion scores that better

mirror the actual document-query relevance, resulting in superior performance.

In theory, R-QDDF also can benefit from such finer mapping. However, we note that R-QDDF only

significantly outperforms all baseline methods (QDF-Reg, DDF and QDIF) for single-dimension queries,

with the average improvements of 5.9%, 4.3%, and 5.4%, respectively. Compared with QDF-Reg, R-

QDDF introduces more document information into the regression model but fails to compete with QDF-

Reg on multiple-dimension queries. By integrating document dependence, R-QDDF allows documents to

contribute to fusion weight derivation but at the same time expands the training space into the document

dimension. Therefore, R-QDDF calls for much more comprehensive and thorough annotations for effective

training. Meanwhile, because our dataset contains more annotations for single-dimension queries than

those for complex queries and because documents have a larger influence in the query-document pairs

of simple queries, R-QDDF’s performance varies greatly between simple queries and complex queries.

In contrast, D-QDDF explicitly fuses query- and document-dependent weights and avoids this training

process. It thus outperforms R-QDDF on complex queries and also shows no significant preference among

different query types. When comparing the results on simple queries, D-QDDF still fails to compete with

R-QDDF as a result of the different fusion process – while R-QDDF fuses queries and documents at the

feature level, D-QDDF does not do so until the very end. Therefore, D-QDDF may fail to identify and

retrieve some relevant documents into the corresponding ranking lists as it considers less information

when measuring the similarity between queries and documents. When dealing with simple queries, fewer

modalities are related and the effect may thus become more obvious.

In summary, both R-QDDF and D-QDDF demonstrate the potential of document dependence but

require better annotations and more effective fusion methods for effective multimodel fusion.

D. Efficiency Study

1) Efficiency Analysis of D-QDDF: Aside from calculating query-dependent weights, the most com-

putationally intensive components of D-QDDF are: offline document-dependent weight derivation and
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online weight fusion.

Let D denote our document collection and M the music social query space. Textual descriptive ability

derivation was implemented by first building a sorted index of all the keywords in M then checking

the existence of each word in the metadata of a document. Therefore, the computation complexity of

this step for all documents is O(|M | log |M |+ γ|D| log |M |), where γ is the average number of words

in the metadata of a document. Generally, we can assume γ � |M |, and the complexity becomes

O(|M | log |M | + |D| log |M |). To learn the relative scores between different modalities, we generated

|Q| queries and used n retrieval experts to retrieve relevant documents, resulting in O(n|Q||D|). Weight

generation from descriptive abilities takes O(n|D|). Therefore, the total time complexity of calculating

document-dependent weights for all documents is

O(|M | log |M |+ |D| log |M |) +O(n|Q||D|) +O(n|D|) . (18)

Since queries are generated from the music social query space, the following relation exists between |Q|

and |M |.

|Q| ≤ |QT | ≈
n/2∑
k=1

(
n/2

k

)
|Mav|k × 1n/2−k

= (1 + |Mav|)n/2 ≈ (1 + |M |/(n/2))n/2

≈ (
2|M |
n

)n/2 , (19)

where |QT | denotes the total number of queries that can be generated from the space, and |Mav| ≈

|M |/(n/2) represents the average number of keywords in each music dimension. Therefore, Eq. 18

equals to

O(n|D|(2|M |
n

)n/2) . (20)

Since the number of retrieval experts n is generally small, the computational complexity is largely

dependent on the size of the document database and the music social query space. In our study, the

complete procedure took 550.725s (textual descriptive ability derivation: 30.192s; relative score learning:

519.910s; weight generation: 0.623s).

Given the weights from both queries and documents, the computational complexity of weight fusion
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is O(n) for each query-document pair. In our experiment, the average weight fusion time for a query-

document pair is 0.020ms and 0.018ms in D-QDDF-MUL and D-QDDF-LNR, respectively.

2) Efficiency Analysis of R-QDDF: The R-QDDF approach involves regression model training and

prediction. In our experiment, the training time using different data sets and the average prediction time

for each query-document pair can be found in Table VII. Since we performed a further sampling from all

the query-document pairs for training, the training time is the average runtime of three random sampling

trials.

TABLE VII
TRAINING TIME AND AVERAGE PREDICTION TIME (PER QUERY-DOCUMENT PAIR) OF R-QDDF WHEN USING TRAINING

DATA SETS OF DIFFERENT SIZES. NO. DENOTES THE SIZE OF DIFFERENT TRAINING DATA SETS ∗ = ×3.4× 105 .
No.(*) 0.1 0.4 1.6 6.4 25.6 102.4 200

Training(s) 6.360 5.930 7.910 8.330 8.260 10.370 9.310
Prediction(ms) 0.074 0.078 0.079 0.082 0.082 0.083 0.082

As shown in Table VII, there is no significant change in the runtime for both training and prediction as

the training data set gets larger. This can be explained by the learning principle of Pegasos. As analyzed in

[10], [44], [45], regression Pegasos takes O(1/(λε)) iterations to achieve an ε-accurate solution. Therefore,

the training complexity is O(m′|V|/(λε)), where |V| denotes the size of the feature vector of a query-

document pair. Theoretically, the runtime of regression Pegasos is independent of the size of training data

set, and it would reveal a reduced training time to achieve a certain generalization performance when the

training data set gets larger [45]. Given a trained regression Pegasos model, the prediction is calculated

by the inner product of the model weight vectors and the feature vectors of testing query-document pairs,

which results in O(n|V|) for each testing sample. The efficient training process and the linear prediction

make R-QDDF scalable to large data sets and practical for real-life multimodal retrieval systems online.

E. Discussion

As the effectiveness study shows, both D-QDDF and R-QDDF are able to improve existing multimodal

fusion approaches with respect to query types. In theory, D-QDDF cannot always derive the optimal

fusion strategy by explicitly fusing query- and document-dependent weights. However, it can easily

leverage existing QDF and DDF approaches and has achieved promising results for complex queries

when compared to other approaches. R-QDDF can derive the optimal fusion strategy in theory, but in
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reality its efficacy is compromised by the need for comprehensively and thoroughly annotated training

samples. Therefore, its performance may vary among queries with different complexities. For example,

our results have shown that R-QDDF consistently outperforms other approaches for simple queries.

For efficiency analysis, both approaches take a linear run time for testing. However, R-QDDF is more

flexible when adapting to larger databases due to its intrinsic efficiency in both training and prediction.

D-QDDF enjoys good efficiency when the document database is static. When documents are frequently

updated or new documents join the database, incremental updates, such as those using weight propagation

based on document similarity measure between new documents and the database, can be implemented

to avoid a thorough update of the database documents. Another possible approach would be to first

derive the descriptive abilities for textual modalities of these new documents and then adopt an average

content-to-text ratio to calculate document-dependent weights. Complete update of all documents can be

done when the number of new (or newly updated) documents reach a certain ratio.

Both D-QDDF and R-QDDF can be easily parallelized to further reduce their computational complexity.

For instance, since each retrieval expert retrieves relevant documents on a particular modality, the retrieval

processes of multiple experts can be parallelized. In addition, the weight calculation for queries and

documents in D-QDDF can also function in parallel.

QDDF generalizes QDF, DDF, and QDIF approaches by considering the dependence of both queries

and documents. As a general multimodal fusion framework, it can be applied to not only music retrieval

but also other scenarios, such as web, image, video retrieval. As metadata and content are common

modalities of different multimedia documents (e.g., image, videos), our implementation methods (i.e.,

dual-phase QDDF and regression-based QDDF) can be directly applied to these applications. The key

step is to construct a social query space that comprehensively covers multiple modalities of the studied

media documents. This way, in D-QDDF, the descriptive abilities of multiple modalities can be accurately

captured, and R-QDDF model can also be trained with sufficient data. A similar method based on

folksonomy data can be adopted to build such social query spaces. However, as the type and number of

modalities may vary significantly across different media documents, building such social query spaces

using purely folksonomy data may be challenging. For example, most tags of an image are related to

the names of objects within the image, while texture information appears as tags far less frequently.

Therefore, multiple online resources (such as tags, comments, descriptions) and the semantic relations
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between different resources need to be explored. Human efforts may also be required to ensure the

correctness and completeness of different modalities.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a general multimodal fusion framework QDDF, which derives the optimal

fusion strategy for each query-document pair by incorporating the content of both queries and documents.

Existing approaches, such as QDF, DDF, and QDIF, are in fact special cases of QDDF when it relaxes

the fusion weight dependence on documents, queries or both. We proposed two approaches to derive

fusion strategies, D-QDDF and R-QDDF. Experimental results show D-QDDF can outperform the other

approaches for most query types and R-QDDF is superior in handling single-dimension queries. Efficiency

results also show the scalability of both approaches over large data sets.

Our proposed approaches may be improved in various aspects. For example, better descriptive ability

derivation methods and relative score learning methods in D-QDDF may help to accurately capture the

importance of different modalities of a document. Fusion methods may also be improved by investigating

the importance of queries and documents in different multimodal retrieval systems. For R-QDDF, we

would like to explore different feature representations of query-document pairs and construct better quality

training data sets to evaluate its performance for complex queries. Since the modalities we investigated

are common among most multimedia documents, both D-QDDF and R-QDDF can also be extended

to other multimedia documents in different multimodal retrieval applications, such as meta search, and

video/image retrieval.
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