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ABSTRACT

Immensely popular video sharing websites such as YouTube
have become the most important sources of music informa-
tion for Internet users and the most prominent platform for
sharing live music. The audio quality of this huge amount
of live music recordings, however, varies significantly due to
factors such as environmental noise, location, and record-
ing device. However, most video search engines do not take
audio quality into consideration when retrieving and rank-
ing results. Given the fact that most users prefer live mu-
sic videos with better audio quality, we propose the first
automatic, non-reference audio quality assessment frame-
work for live music video search online. We first construct
two annotated datasets of live music recordings. The first
dataset contains 500 human-annotated pieces, and the sec-
ond contains 2,400 synthetic pieces systematically generated
by adding noise effects to clean recordings. Then, we for-
mulate the assessment task as a ranking problem and try
to solve it using a learning-based scheme. To validate the
effectiveness of our framework, we perform both objective
and subjective evaluations. Results show that our frame-
work significantly improves the ranking performance of live
music recording retrieval and can prove useful for various
real-world music applications.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
filtering, Retrieval models; H.5.5 [Sound and Music Com-
puting]: Systems

General Terms

Algorithms, Design, Experimentation
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Table 1: Different live video recordings and the cor-
responding audio quality ratings of the song “Hold
it against me” by Britney Spears.

No URL AQ Ord

1 http://www.youtube.com/watch?v=IkAI6MHtJCc Good 1

2 http://www.youtube.com/watch?v=HtCkp40b5vA Poor 4

3 http://www.youtube.com/watch?v=7P7JwaLRToM Poor 5

4 http://www.youtube.com/watch?v=1CvxILczzgs Good 3

5 http://www.youtube.com/watch?v=vOBWvXOxck8 Good 2

6 http://www.youtube.com/watch?v=kCI3It5YI_0 Poor 6

1. INTRODUCTION
The last decade has witnessed an explosion of musical

data on video sharing websites. YouTube1, Youku2, and
Nico Nico Douga3 are now counted among the largest and
most important sources of music information serving users,
who can not only enjoy the official audio and video releases
(both live and studio versions) of their favorite artists but
also share their own recordings of live concerts with oth-
ers who do not have the experience. The audio quality of
the huge amount of live music recordings, however, varies
significantly due to different recording factors, such as envi-
ronmental noise, location, and recording device. In view of
this, we try to improve live music video search by incorpo-
rating audio quality assessment.

When given a query, existing video search engines match
it with the metadata of each video in the database and rank
results according to their relevance. User feedback, such as
view count and rating, may also be considered in the rank-
ing or re-ranking process. To the best of our knowledge,
however, most popular video search engines do not take the
audio quality of the recordings into consideration. For ex-
ample, the song “Hold it against me” by Britney Spears has
several live recordings available on YouTube. We invited
ten subjects to rank the order (Ord) of the top six videos
retrieved using the query“Britney Spears Hold it against me
live” after evaluating their overall audio quality (AQ). The
result, summarized in Table 1, indicates that audio quality
varies among different recordings. Not only could officially
released versions (i.e., video No.2) have poor audio quality,
videos with better audio quality could often be outranked
by those with poorer quality. Because most users prefer live
music videos with better audio quality, it is important to
account for it when searching for live music. Although user

1http://www.youtube.com/
2http://www.youku.com/
3http://www.nicovideo.jp/



feedback may indirectly reflect audio quality (videos with
better quality are preferred by users, leading to higher view
counts and ratings), videos newly added to the database
have little or no user feedback information and are thus given
low rankings despite their superior audio quality. Therefore,
a content-based audio quality assessment strategy is in great
demand for long-tail retrieval of live music videos.

Previous research on perceptual assessment of sound qual-
ity started in the early 1990s. Most published regulations
can be found in the ITU (International Telecommunications
Union) Recommendations, which cover various assessment
methods for both audio quality (e.g., perceptual evalua-
tion of audio quality (PEAQ) [16, 31–33]) and speech qual-
ity (e.g., perceptual evaluation of speech quality (PESQ)
[18]). These approaches generally compare the quality of
the sound signals processed/affected by a test system (e.g., a
multimedia device, codec, and telecommunication network)
with that of a reference signal in order to evaluate or im-
prove the performance of the system. However, this so-called
reference-based audio quality assessment may be inadequate
for live music videos. Because recordings of the same per-
formance can be taken under vastly different circumstances,
it is seldom possible to find an appropriate reference video.

In this paper, we propose an automatic, non-reference au-
dio quality assessment method for live music video search on-
line. We define audio quality as a subjective metric that de-
scribes music audio content. As music is performed, recorded,
and then perceived by users in a sequential manner, audio
quality can also be assessed from different perspectives along
this process. We thus summarize six aspects to assess au-
dio quality, including “instrumental” and “vocal” aspects for
the live performance, “environmental” and “equipment” as-
pects for the recording conditions during the concert, and
“pleasantness” and “overall quality” aspects for the end-user
perception of the recording.

Because the assessment procedure can be very subjective,
we formulate the assessment task as a ranking problem and
try to solve it using a learning-based scheme. There are two
advantages for assessing audio quality in this way. First, a
ranking mechanism (i.e., by saying that song A has better
quality than song B) better controls the subjectivity than
mere classification (i.e., by saying that song A has good
quality while song B has poor quality). Second, the ranking-
based assessment method can be directly applied to re-rank
the “relevant” live music recordings for a query retrieved by
video search engines.

To implement our framework, we first obtain human an-
notations on all the said six aspects for a set of live record-
ings downloaded from YouTube. Then, several learning-to-
rank (LTR) models are trained using the annotated data to
achieve effective online re-ranking of music video search re-
sults. The effectiveness of the proposed framework is demon-
strated through objective cross-validation. We also create a
large database of synthetic recordings to expand the scope
of our experiments.

There are four main contributions in this paper:

• To the best of our knowledge, this work presents the
first attempt to develop automatic audio quality as-
sessment for online live music recording retrieval.

• We establish a collection of 500 live music recordings
with human annotations obtained via a web-based in-

terface and a database of 2,400 synthetically altered
live music recordings in 8 different quality conditions.

• We formulate the audio quality assessment task as a
ranking problem and tackle it using LTR approaches
with various audio feature sets.

• We conduct both objective and subjective evaluations
to demonstrate the effectiveness and the usability of
the proposed framework.

Beyond the field of multimedia information retrieval, our
work can make meaningful contribution to the following top-
ics. First, audio quality assessment can function as an addi-
tional clip selection criterion for creating better live concert
video mashups [28]. Second, as an auditory characteristic of
a music piece, audio quality can be readily integrated into
music similarity measures [35]. Consequently, our work can
also facilitate the re-ranking stage in general music retrieval
and recommendation services.

The rest of the paper is structured as follows. Section 2
reviews related literature on audio quality assessment. Sec-
tion 3 outlines our proposed framework. Section 4 details
our method from data collection, audio feature extraction,
to model learning and testing. Objective and subjective
evaluations are presented in Sections 5 and 6, respectively.
Section 7 concludes our work and explores future directions.

2. RELATED WORK
Initially, the assessment of sound quality was carried out

through subjective tests only [14,17], in which subjects rated
the overall quality of a test sound (distorted signal) against
the reference sound (original signal) using a five-point score
based on the ITU-RBS.1284 standard [15]. For example,
sounds with the quality ranging from very annoying to im-
perceptible are scored from 1 to 5. Although subjective test
yielded reliable results, it was expensive and time-consuming.
Therefore, methods were proposed to assess sound quality
objectively and automatically.

At first, the objective methods compared the reference
sound and the test sound using traditional measures devel-
oped purely from engineering principles (e.g., signal-to-noise
ratio and total harmonic distortion). However, their per-
formance was no match against that of methods incorpo-
rating the psychoacoustic characteristics of human auditory
system. Moreover, as more non-linear and non-stationary
distortions appear, the shortcomings of these algorithms be-
come more evident.

To emulate the subjective assessment process, researchers
constructed perceptual models by taking into account multi-
ple psychoacoustic phenomena (e.g., absolute hearing thresh-
old and masking) of human auditory system. For example,
Karjalainen [22] was one of the first to use the auditory
model, such as the noise loudness, for sound quality assess-
ment. Brandenburg explored the level difference between
the noise signal and the mask threshold and then proposed a
noise-to-mask ratio for audio quality assessment [2,3]. Bran-
denburg’s method was later extended to include the mean
opinion scores [29, 30]. These efforts eventually led to the
standardization of perceptual evaluation of audio quality
(PEAQ) [16,31–33] and of speech quality (PESQ) [18].

PEAQ performs quite well on most of the test signals
[32, 33]. However, it mainly focuses on low-bit-rate coded
signals with small impairments. Therefore, recent research
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Figure 1: The system framework.

has honed PEAQ in several aspects. Barbedo and Lopes [1]
developed a new cognitive model to map the output percep-
tual models to subjective ratings. Huber and Kollmeier [13]
proposed a novel audio quality assessment method and ex-
tended the range of distortions on speech and music signals.
More work is summarized in [4,7,32].

However, the ultimate goal of all the work mentioned
above was to develop, test, or compare multimedia devices,
codecs and networks for high-end audio or video services
(e.g., VoIP and telepresence services) [4, 7, 32]. Moreover,
both the reference signal and the distorted signal processed
by the test system were available and generally well aligned.
Doets and Lagendijk [8] studied the relationship between the
parameters extracted from audio fingerprintings and the per-
ceptual quality of compressed audio. However, the reference
signals and the specific types of noises that may degrade the
quality are required.

Recently, non-reference approaches have also been devel-
oped to assess the perceptual quality non-intrusively. Most
work is related to quality assessment of speech, image or
video signals. However, there is very little published work
on non-reference audio quality assessment. For example,
Malfait et al. [26] studied a non-reference quality assessment
algorithm for speech, but it in fact relied on a semi-reference
obtained from the reconstructed speech signal. Rix et al. [27]
reviewed more work on non-reference quality assessment of
speech. Hemami and Reibman [12] reviewed the background
and related work in designing effective non-reference quality
estimator for images and videos. Kennedy and Naaman [23]
proposed a system that can manage and create a high qual-
ity concert video mashup by employing the audio finger-
printings of different video clips of the same event. They
found that the most selected video clips tend to have higher
audio quality. However, no systematic study was conducted
for audio quality assessment in their work. Saini et al. [28]
evaluated the quality of the visual information in live per-
formance videos for creating a good quality mashup.

In the case of live music recordings created by common
users, existing methods face two major difficulties. First,
the audio quality of different recordings for the same live
performance can be significantly different owing to various
factors, such as the recording location/environment, starting
point, duration, and recording device. Among the live music
video recordings for a specific live concert, it is difficult to

set up a reference due to the complex characteristics caused
by the artist’s performance, the environment of the concert
venue, and the subjectivity of user perception. Second, un-
like speech and studio versions of music, live music signals
contain numerous and complex layers of information that
may influence the assessment of audio quality (e.g., singing
voice, various instrumental sounds, and unpredictable back-
ground noises). We hope that, by learning from annotated
data, the learning-to-rank (LTR) algorithms can automati-
cally assess the audio quality and predict the ranking of any
live music recordings.

3. FRAMEWORK OVERVIEW
Our framework is based on how people assess the au-

dio quality across multiple “relevant” recordings of the same
song. We implement our framework in both the training and
testing phases with a two-stage process (Figure 1), namely
relevance filtering and audio quality assessment. Relevance
filtering aims to identify the relevant songs, which should be
live versions of the query song, regardless of audio quality.
The second stage assesses the audio quality of each relevant
song and produces a quality-based ranking.

3.1 Relevance Filtering
Searching music videos by metadata, such as artist name,

song title and version type (e.g., official or live), is the most
common and established method in general video retrieval
systems, since most users tend to mark correct and sufficient
metadata when they upload the music videos. In turn, the
descriptive metadata can be used to accurately identify the
live music videos relevant to a text-based query.

In this work, we use a text query with the format“artist name
song name live” to search for live versions of a specific song
on YouTube, assuming that this format can filter out most
of the irrelevant as well as non-live videos. Given such a
song query, the group of live versions returned is termed a
query song group. At present, some manual efforts are also
made to further check the returned recordings to ensure that
they are relevant live versions to the given query. Our future
work will make this filtering process fully automatic.

3.2 Audio Quality Assessment
In the training phase, we apply the learning-to-rank (LTR)

algorithm to learn the model for audio quality assessment.
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Figure 2: The diagram of collecting the live music
videos.

We first create a set of training song queries and then gen-
erate the query song groups via relevance filtering. Next,
subjects are invited to annotate each query song group (see
Section 4.2) by rating the audio quality of each component
version based on the six aspects of audio quality as well as
ranking the order among all versions in a query song group.
With the annotated data, the LTR algorithm learns a global
model that considers the ranking relationship among the
component versions of each training query song group. We
will explain the rationale and realization of this learning
scheme in Section 4.4.

In the testing phase (i.e., the proposed audio quality as-
sessment system), relevant filtering first generates the query
song group for a test query. Then, the learned LTR model
predicts the ranking score for each component version in the
query song group (see Section 4.4 for details). The system
then outputs a ranked list based on these scores, with the
versions in descending order in terms of audio quality. This
way, the assessment stage can be seen as a re-ranking over
the relevance filtering results.

Both training and testing data undergo the feature ex-
traction procedure (see Section 4.3). Various audio features
sets, such as low-level acoustic features, MFCCs, and psy-
choacoustic features, are extracted from all recordings. For
efficient audio quality assessment online, feature extraction
can be performed offline beforehand.

4. THE PROPOSED APPROACH
As there is no benchmark dataset available for the pro-

posed application, our work starts with collecting the live
music database and the associated annotations. Then, we
discuss several audio feature sets and present the training
and testing procedures of the employed LTR algorithms.

4.1 Data Collection
For objective performance study, we have constructed two

annotated datasets, one human-annotated (ADB-H) and the
other synthetically generated (ADB-S). For subjective evalu-
ation, we have also created a non-annotated (NDB) dataset.

Figure 2 outlines the live music data collection process and
also illustrates the relevance filtering stage in more detail.
To create a diverse dataset, we choose four genres of music
(i.e., rock, pop, electronic, and country) that tend to have
more live recordings of concerts. For each genre, we select
a number of popular artists with their signature songs by

Figure 3: A snapshot of the song assignment for
human annotation.

finding each artist’s top tracks on Last.fm API.4 We then
search for live music recordings on YouTube using the query
format“artist name song name live”and manually select the
most relevant results.

For ADB-H, we generate 100 song queries (4 genres, 5
artists per genre, and 5 songs per artist) on YouTube and
select 5 relevant versions of each song query from its top 20
results.5 Efforts are also made to ensure that the 5 versions
vary in their audio quality. ADB-H thus contains 100× 5 =
500 live music recordings.

For ADB-S, we generate 200 song queries (4 genres, 5
artists per genre, and 10 songs per artist) in addition to
the 100 queries used in ADB-H. The artists for these 200
song queries are different from those in ADB-H. Moreover,
unlike ADB-H, we only select the relevant version with the
best audio quality (denoted as the “clean version”). As will
be detailed later, each of these 100 + 200 = 300 clean ver-
sions are subsequently used to generate 7 additional noisy
versions. ADB-S thus contains 300× (7+ 1) = 2, 400 items.

For NDB, we generate 100 queries (4 genres, 5 artists
per genre, and 5 songs per artist) from a different group
of artists. Then, ten versions among the top 20 search re-
sults are randomly selected for each query song, regardless
of their relevance and live-ness. NDB thus contains 1,000
non-annotated music pieces.

4.2 Data Annotation

4.2.1 ADB-H

To obtain the ground truth for ADB-H, we build an au-
dio quality assessment interface online (Figures 3, 4, and
5) and recruit 60 subjects with normal hearing for anno-
tation. Each subject is assigned eight query song groups
(see Figure 3) from two randomly chosen genres and per-
forms two types of annotations within each group. For the
first type, the visual channel of the recording is masked, and
subjects rate the audio quality in the six perception aspects
(Figure 4) – instrumental, vocal, environmental, equipment-
related, pleasantness, and overall quality. The first five as-
pects are based on a scale of 1 to 5, and the overall rating is
a binary choice. Only when the audio ratings are completed
can subjects enable the visual channel (by clicking the“Tog-
gle Visual”button) to rate the seventh aspect, visual quality
(see Figure 4). Currently we only consider the audio-related
quality aspects; the visual quality rating is intended for fu-

4http://www.last.fm/api
5It may happen that YouTube returns some non-live ver-
sions in the top 20 results.



 

Figure 4: A snapshot of the interface for annotating
the audio and visual quality.

Figure 5: The designed interface for labeling the
ranking. The index of each live recording is dragged
and dropped into a desired ranking position.

ture research. The second type of annotation takes place
after all songs in the query song group have been rated.
Subjects rank the overall audio quality of the five versions
by a drag-and-drop mechanism (see Figure 5).

Since all live recordings used in our datasets are songs
performed by their original artists, we assume that the sub-
jects would not debate the merit of the performance itself.
Therefore, subjects are reminded by the interface to neglect
the intrinsic quality of the performance, e.g., whether the
vocal is out-of-tune, cracked, off-beat, etc. In addition, we
further clarify that, by “instrumental” and “vocal,” we mean
whether they sound clear, with the volume well-balanced, in
the recording.

4.2.2 ADB-S

The significant time and manpower costs make it difficult
to scale human-annotated datasets. We thus have created
another annotated dataset by automatically generating var-
ious types of poor-quality recordings.

We applied the following noise effects, which are widely
used in speech, TV, and movie productions [5], to the 300
clean versions.

• Amplitude compression and then amplification, where
the compression uses the ratios of 4.47:1 for |A| ≥
−28.6 dB, 0.86:1 for −46.4 dB < |A| < −28.6 dB,
and 1:1.61 for |A| ≤ −46.4 dB (|A| is the absolute am-
plitude value), and the amplification gains the volume
of the entire song with a ratio of 1:4. This simulates
clipped live music sound produced by non-professional
recordings devices whose dynamic range may not be
able to adapt to the extremely loud musical sounds in
the concert.

• Band-pass filtering using a second order Butterworth
filter with cut-off frequencies at 100Hz and 6000Hz.
This can simulate a muffling effect.

Table 2: Applied noise effects and audio quality
rankings (averaged across ten subjects) of the 8 syn-
thetic versions in a query song group in ADB-S (AQ
= 1: Good, 0: Poor; Ord = quality rank).

Version 1 2 3 4 5 6 7 8
Comp & Amp

√ √

Band-pass
√ √

White noise
√ √

Crowd noise
√ √ √ √

AQ 1 0 0 0 0 0 0 0
Ord 1 4 2 3 5 8 6 7

• White noise addition with a maximum magnitude of
512 quantization steps. White noise is a signal with
an approximately uniform (constant) power spectral
density. This effect simulates the noise generated by
the recording devices.

• Crowd noise addition with real-life noises from the con-
cert audience, such as clapping, cheering, singing, and
screaming. We collect 30 crowd noise samples from
Freesound,6 a collaborative sound database online, us-
ing queries “concert noise,” “cheering,” and “scream-
ing.” A set of 30 audio clips of crowd noises are uni-
formly added into each clean version with the signal-
to-noise ratio of 1:1.

Since live music recordings generally contain noise from
multiple sources, we also experiment with certain combina-
tion of noise effects to simulate the poor-quality examples.
Seven poor-quality versions (labeled “Poor”) are generated
for each clean version (labeled “Good”). Each query song
group in ADB-S thus contains 8 component versions. To
assess which noise effect degrades audio quality more, ten
subjects are invited to rank the order of the 7 poor-quality
versions for 20 randomly chosen query songs (see Table 2).

4.3 Audio Feature Sets
We consider three types of audio feature sets in this work.

The feature extractor is implemented based on MIRTool-
box [24] and the methods proposed in [9].

• Low-level features (13 dim): The feature set in-
cludes root-mean-square, brightness, zero-crossing rate,
spectral flux, rolloff at 85%, rolloff at 95%, spectral
centroid, spread, skewness, kurtosis, entropy, flatness,
and irregularity.

• Mel-frequency cepstral coefficients (39 dim): This
feature set contains static MFCCs, delta MFCCs, and
delta-delta MFCCs.

• Psychoacoustic features (20 dim): This feature set
covers loudness, sharpness, roughness, and tonality fea-
tures (key clarity, mode, harmonic change, and the
normalized chroma weights).

For each audio feature set, we extract all the features with
the same frame decomposition of 50ms and 50% hop sizes to
ensure easy alignment, thereby obtaining a set of frame-level
feature vectors for a live recording. We summarize the song-
level audio feature representation for a recording by taking
the mean and standard deviation of its frame-level vectors.
6http://www.freesound.org/



4.4 LTR Model Training and Testing

4.4.1 Notations and Rationale

Suppose that the annotated dataset S contains M query
song groups, S = {s(i)}Mi=1, where each group has Ni compo-

nent versions s(i) = {v(i)
j }Ni

j=1, and each component version

contains its corresponding audio feature vector ~x
(i)
j and rank

(or relevance) label y
(i)
j , i.e., {~x(i)

j , y
(i)
j } ∈ v

(i)
j . The rank la-

bel y can be binary, numerical, or ordinal score.
Our principle for leaning the ranking model is that we

only consider the rank relationship (obtained by {y(i)
j }Ni

j=1)

among different versions {v(i)
j }Ni

j=1 within a query song group

s(i). In other words, we do not care about the audio qual-

ity comparison between v
(a)
p and v

(b)
q , where 1 ≤ p ≤ Na,

1 ≤ q ≤ Nb, and a 6= b, because subjects are not asked to
compare them.

Within a query song group, versions do not differ from
each other in their musical content, such as melody, har-
mony, rhythm, and instrumentation. Live concert record-
ings of Britney Spear’s “Hold it against me,” for example,
will have similar, if not identical, melody, harmony, and
rhythm regardless of where or how the music is recorded.
Because audio features extracted from the waveform can be
related to musical content as well as audio quality, compar-
ing versions of different songs would disproportionately high-
light the differences in musical content. As a result, music
content will vastly overpower audio quality in the learning
process. Therefore, we only compare different versions of
the same song (i.e. within a query song group) to control
for the differences in music content features and to ensure
that the algorithm learns the most from features related to
audio quality. Hypothetically, if the algorithm can exclude
features related to musical content, the effect of the dis-
crepancy in audio quality can be enhanced regardless of the
data’s live-ness and relevance. In the testing phase, we con-
duct subjective evaluation using the NDB database, which
may contain non-live and irrelevant videos alongside live and
relevant ones, to verify this hypothesis.

4.4.2 Formulation

The goal of model training is to learn a global ranking
function f(·) for the audio feature vector ~x of a live music
recording. Given a training dataset S , the learning objective
can be generalized to the minimization of the following loss
function L with respect to f ,

L(f ;S) =
M∑

i=1

p(s(i)) · l(f ;x(i),y(i)) + λ‖f‖, (1)

where p(s(i)) is the prior model for s(i), l(·) is the query-level
loss function, x(i) = {~x(i)

j }Ni

j=1, y(i) = {y(i)
j }Ni

j=1, and ‖f‖
represents the regularizer for f . Such a learning objective
can be solved by many existing LTR algorithms.

In the testing phase, given an arbitrary query song group
s(∗), the system ranks the component versions by sorting the

scores {f(~x(∗)
j )}N∗

j=1.

4.4.3 Learning-to-Rank Algorithms

According to their input/output representations and loss
functions, learning-to-rank algorithms can be categorized
into three groups [25] – pointwise, pairwise, and listwise –

all of which can be used in our framework. From each cate-
gory, we adopt the algorithm with superior performance in
our preliminary study.

• Pointwise (MART): For this approach, the annota-
tions are converted to numerical scores. MART [11]
uses a general gradient descent “boosting” paradigm
with multiple additive regression trees to minimize the
objective function.

• Pairwise (SVM-Rank): For this approach, the an-
notations in each query song group are converted into
the pairwise orders among versions. Support vector
machine (SVM) is generally regarded as one of the
most powerful supervised learning methods. SVM-
Rank [20,21] minimizes the loss function with respect
to a weight vector by considering all the pairwise or-
ders as constraints.

• Listwise (AdaRank): For this approach, the anno-
tations in each query song group are converted into
a ranked list. Similar to AdaBoost [10], AdaRank
learns a number of “weak rankers” and their associ-
ated weights and makes prediction by linearly combin-
ing them. We utilize AdaRank [36] to directly opti-
mize the ranking evaluation measures with a boosting
scheme.

We utilize RankLib [6] for implementing MART and AdaRank
and the SVMrank tool [21] for SVM-Rank.

5. OBJECTIVE EVALUATION
The goals of our objective evaluation are twofold. First,

we compare the effectiveness of different LTR algorithms in
terms of ranking performance based on the overall quality
aspect, denoted by LTR method comparison (LTRC). Sec-
ond, we study the performance with different audio feature
sets based on the six perception aspects, denoted by au-
dio features comparison (AFC). For each goal, we use both
ADB-H and ADB-S, leading to four evaluation tasks in to-
tal, as summarized in Table 3.

5.1 Audio Quality Labels
We exploit three types of ground truth labels in ADB-H

and ADB-S: binary, ranking, and numerical. Binary and
ranking labels describe the overall quality aspect, while nu-
merical labels rate the other five perception aspects, i.e.
instrumental, vocal, environmental, equipment-related, and
pleasantness. For the binary labels, “Good” is assigned a
value of 1 and“Poor”0. Recall that ADB-H consists of rank-
ing order annotated by the subjects, with each query song
group containing 5 versions, and that ADB-S uses ranking
order as shown in Table 3, with each query song group con-
taining 8 versions. Ranking labels are assigned as the reverse
of the ranking order within the query song group so that the
label of the best-quality version (rank 1) has the highest as-
signed value (5 for ADB-H or 8 for ADB-S) and vice versa.
The numerical label, which is only applicable to ADB-H,
takes the average rating of each component version.

5.2 Methods Compared
We implement three LTR algorithms (i.e., MART, SVM-

Rank, and AdaRank) and a baseline method (i.e., Random)
in the experiment. The Random method generates a per-
mutation randomly for ranking the versions in each test



Table 3: Summary table for objective evaluation. The task names, LTRC and AFC, stand for “LTR method
comparison” and “audio feature comparison,” respectively.

Task Dataset Label Type LTR Methods Features Aspect Result

LTRC 1 ADB-H
Binary Random, MART,

SVM-Rank, AdaRank
All features Overall Fig. 6

Ranking

LTRC 2 ADB-S
Binary Random, MART,

SVM-Rank, AdaRank
All features Synthetic Fig. 7

Ranking

AFC 1 ADB-H
Numerical

SVM-Rank
Low-level, MFCCs,
Psychoacoustic, All
features

Instrument

Fig. 8

Vocal
Environment
Equipment
Pleasantness

Binary Overall
Ranking Overall

AFC 2 ADB-S
Binary

SVM-Rank
Low-level, MFCCs,
Psycho., All features

Synthetic Fig. 9
Ranking

query song group without accounting for their audio quality.
We repeat the random permutation 10 times for each test
query song group and calculate the average baseline per-
formance. For each LTR algorithm, we perform a ten-fold
cross-validation and calculate the average performance.

5.3 Performance Measure
The normalized discounted cumulative gain (NDCG) [19],

a widely used metric in information retrieval, is adopted
to measure the ranking performance. To calculate NDCG,
the discounted cumulative gain (DCG) at a particular rank
position p is first calculated in a way that penalizes the score
gain near the bottom more than those near the top.

DCG@p =

p∑

i=1

2reli − 1

log2(i+ 1)
, (2)

where reli is the ground truth label of the recording at po-
sition i. It is then normalized so that the performance for
each test query can be compared.

NDCG@p =
DCG@p

IDCG@p
, (3)

where IDCG@p serves as the normalization term that guar-
antees the ideal NDCG@p to be 1. We summarize the per-
formance by averaging the NDCGs over the test query set.

5.4 Result and Discussion

5.4.1 Comparison among LTR Algorithms

We first evaluate the effectiveness of each LTR algorithm
holistically. All audio feature sets are concatenated into a
single vector representation. The LTR models are trained
with the binary or the ranking labels (both pertaining to
overall quality) of either the ADB-H or the ADB-S dataset.

Figure 6 presents the average NDCG@5 on ADB-H. First,
all LTR algorithms significantly (p < 0.01) outperform Ran-
dom in all cases, demonstrating the effectiveness of our pro-
posed approach. Trained with binary labels, MART, SVM-
Rank, and AdaRank outdo Random by 11%, 17%, and 8%,
respectively; with ranking labels, 16%, 17%, and 15%, re-
spectively. Second, SVM-Rank achieves the best ranking
performance of the three LTR algorithms. Interestingly, the
performance difference between SVM-Rank and the other
two are larger with binary labels than with ranking labels.
This may be attributed to the difference of learning criteria
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Figure 6: Performance based on overall quality using
the binary and ranking labels on ADB-H.

among the three LTR approaches. For pairwise approach,
the learning criteria do not compare training examples with
the same binary labels, e.g., the approach does not need
to discriminate the feature difference between two “Good”
quality examples. While for the other two approaches, the
feature difference between two “Good” quality examples are
still taken into account, leading to certain randomness or
contradiction during the learning process. For example, sup-
pose a subject has the same binary labels in the case in Ta-
ble 1, a listwise approach may convert the binary labels into
#4>#5>#1>#6>#3>#2, which is much different from
the ranking labels by human, #1>#5>#4>#2>#3>#6.

Figure 7 presents the the average NDCG@8 on ADB-S.
MART, SVM-Rank, and AdaRank also significantly (p <
0.01) outperform Random with improvements of 31%, 93%,
and 71% for binary labels and 31%, 51%, and 41% for rank-
ing labels, respectively. Moreover, SVM-Rank achieves a
remarkable performance of about 99% for both binary and
ranking labels. This lends support to our hypothesis (Sec-
tion 4.4.1) that minimizing the discrepancy in musical con-
tent features can magnify the learning potential with the
audio quality features.

In sum, SVM-Rank achieves the best performance among
the three LTR algorithms on both ADB-H and ADB-S. We
thus adopt SVM-Rank in the following experiments.

5.4.2 Comparison among Different Audio Features

Using SVM-Rank, we compare the performance among
different audio feature sets, namely low-level, MFCCs, psy-
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Figure 8: Performance on ADB-H using SVM-Rank with all types of labels and different audio feature sets.
Except the overall quality aspect, the others are all numerical labels.

 

0.4

0.5

0.6

0.7

0.8

0.9

1

Binary Ranking

N
D

C
G

@
8

 

Random

MART

SVM-Rank

AdaRank

Figure 7: Performance based on overall quality using
the binary and ranking labels of ADB-S.

choacoustic, and all three together. For ADB-H, we use all
types of labels to train the SVM-Rank models, and Figure 8
shows the result. For ADB-S, we train SVM-Rank with the
binary and ranking labels and show the result in Figure 9.

In almost all cases, we observe that both the low-level and
psychoacoustic feature sets achieve better performance than
MFCCs, as does the all-concatenated feature set. Recall-
ing Section 4.4.1, we hope the learned model could neglect
features related to musical content. Since MFCCs are de-
veloped to capture the spectral envelope based on human
audition system, they tend to carry much more information
about the musical content instead of the noise, and hence
are less capable of identifying the difference in audio quality
we are interested in. As shown in Figure 9, this phenomenon
is more evident for ADB-S, in which all the noisy versions
are generated directly from the clean one.

From Figure 8, we observe that the performance of the
low-level and psychoacoustic feature sets with the numerical
labels are very consistent with NDCG@5 ≈ 93%. Except
in the case of environmental aspect, using low-level features
always leads to superior performance, further demonstrating
its effectiveness and robustness in this task.
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Figure 9: Performance of SVM-Rank on ADB-S us-
ing different audio feature sets.

6. SUBJECTIVE EVALUATION
To further evaluate the effectiveness and usability of the

proposed approaches, a subjective study was carried out us-
ing NDB. Two SVM-Rank models trained with ADB-H and
ADB-S (termed as SVM-Rank-H and SVM-Rank-S), respec-
tively, are adopted to rank each query song group in NDB by
audio quality. Their performance is evaluated in terms of (1)
how users perceive the overall ranking quality of SVM-Rank
compared to Random; and (2) how well SVM-Rank ranks
the recordings with the best and the worst audio quality in
a query song group.

6.1 Methodology
We recruit twenty subjects, all of whom are music lovers

without auditory disorders. After a brief introduction to fa-
miliarize with the evaluation interface, each subject is asked
to evaluate 10 test query song groups that are randomly
chosen but represent all four music genres. For each of the
first five groups (the first perspective), two ranked lists are
presented in randomized order. One list is generated by
Random, and the other is generated by SVM-Rank-H half
the time and SVM-Rank-S half the time. Subjects listen
through the two ranked lists and indicate the better one.



Table 4: Supporting Rates of SVM-Rank-H and
SVM-Rank-S when comparing with Random.

Rock Country Electronic Pop Avg

SVM-Rank-H 0.800 0.800 0.500 0.700 0.720

SVM-Rank-S 0.867 0.933 0.600 0.700 0.800

For each of the last five groups (the second perspective),
they need to identify from a randomly permutated list the
versions with the best and the worst audio quality. In sum-
mary, both SVM-Rank-H and SVM-Rank-S are evaluated
with a total of 1,000 recordings (100 query song groups),
half of which for overall ranking evaluation and the other
half for best/worst audio quality ranking.

6.2 Performance Measure
The first perspective is measured by the supporting rate

(SR) SRm = nm/|S|, where nm is the number of test song
groups on which method m outperforms Random, and |S|
is the total number of test song groups.

To measure the performance from the second perspective,
we adopt both mean reciprocal rank (MRR) [34] and mean
rank position (MRP).

MRR = 1/|S|
|S|∑

i=1

1

ranki
, (4)

MRP = 1/|S|
|S|∑

i=1

ranki, (5)

where ranki denotes the rank of the best-quality version
(or the worst-quality version) in the ranked list for the i-th
query song group.

We denote the MRR for the best-quality and the worst-
quality versions as MRRb and MRRw, respectively. A bet-
ter ranking method would result in MRRb closer to 1 and
MRRw closer to 1/N , where N = 10 is the number of ver-
sions in a query song group. We calculate the MRRb and
MRRw of Random, respectively, by using 100 random inte-
gers randomly generated between 1 and 10 as the ranking
positions of all best-quality or worst-quality versions.

6.3 Results and Discussion
Table 4 presents the average SR of SVM-Rank-H and

SVM-Rank-S when comparing with Random. The overall
SR performance of SVM-Rank-H and SVM-Rank-S are sig-
nificantly better than that of Random, clearly indicating
that subjects are more pleased with the ranked lists gener-
ated by our approaches. The SRs in terms of different music
genres show that both our approaches perform well for coun-
try and rock, but not for electronic. This is possibly due to
the fact that electronic music tends to be intrinsically noisy
and thus makes it more difficult for subjects to judge the
differences in audio quality.

Table 5 presents the MRR performances of SVM-Rank-H
and SVM-Rank-S. For Random, the calculated MRRb and
MRRw are 0.301 and 0.299, respectively. Both SVM-Rank-
H and SVM-Rank-S significantly (p < 0.01) outperform
Random in the task of ranking the best/worst-quality ver-
sions. The MPRs of the best-quality and the worst-quality
versions are 2.60 and 8.56, respectively, for SVM-Rank-H;
and 2.70 and 7.78, respectively, for SVM-Rank-S. For Ran-

Table 5: The performance of SVM-Rank-H and
SVM-Rank-S for ranking the best-quality (MRRb)
and the worst-quality (MRRw) versions.

SVM-Rank-H SVM-Rank-S
MRRb MRRw MRRb MRRw

Rock 0.503 0.115 0.588 0.144
Country 0.698 0.116 0.703 0.188
Electronic 0.524 0.126 0.553 0.142
Pop 0.589 0.127 0.541 0.122
Avg 0.574 0.122 0.586 0.146

dom, the MRPs are around 5.02 for both quality versions.
These results indicate that our proposed approaches are able
to rank the best-quality versions at higher positions and
the worst-quality versions at lower positions. In terms of
the four music genres, we observe that both SVM-Rank-H
and SVM-Rank-S still perform very well for country music.
Unlike the previous subjective evaluation perspective, how-
ever, identifying the best-quality and worst-quality versions
of electronic music seems to have become relatively easier
for subjects. Moreover, the performance variance among
the four genres is also smaller.

In summary, the results validate the effectiveness of our
systems supported by evaluations using human perception
and demonstrate the practical usability in ranking live music
recordings according to audio quality. An interesting obser-
vation is that SVM-Rank-S generally performs slightly bet-
ter than SVM-Rank-H.We have three plausible explanations
for this. First, ADB-S (2,400 pieces) contains more training
query song groups than ADB-H (500 pieces), which could
benefit the model generalizability of SVM-Rank-H. Second,
this result implies that our noise effects can reflect the real
factors that degrade the audio quality of live music record-
ings. Third, the models learned from ADB-H may still in-
volve the influence of musical content features. Since some
query song groups in NDB may contain irrelevant record-
ings, the discrepancy in musical content may confuse their
ranking prediction.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel framework to assess

audio quality for online live music search. Unlike previous
reference-based audio quality assessment methods, our ap-
proach is non-referenced. We have established two music
datasets of 500 annotated and 2,400 synthetic live music
recordings for this study. We believe that the two con-
structed datasets can also serve as additional benchmark
datasets for developing novel learning-to-rank algorithms in
the machine learning research. Three LTR models with dif-
ferent audio feature sets were evaluated in terms of ranking
performance based on different audio quality aspects. Our
objective and subjective experimental results have shown
that the proposed approaches can effectively rank live music
recordings according to audio quality.

Our future work is fourfold. First, we will enlarge our
datasets. Second, we will explore more audio features and
learning algorithms to gain the effectiveness of audio qual-
ity assessment. Third, we will develop the segment-based
approach, because the mean and standard deviation of the
whole frame-level features may over-simplify the representa-
tion of the audio features of a recording. Fourth, we will in-



tegrate the proposed framework into general music retrieval
and recommendation systems.
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