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Abstract—In this paper, we present a comprehensive study1

on sensor-assisted video encoding (SaVE) schemes for video2

capturing on mobile devices in real-world environments. Our3

purpose is to reduce the computational complexity of video4

encoding by leveraging sensors that are increasingly available5

on mobile devices, e.g., accelerometers and digital compasses.6

Motion estimation is a key component of video encoding. In this7

paper, SaVE calculates the rotational movement of a camera8

(on mobile devices) and then infers the global motion in the9

camera imager. SaVE subsequently employs the estimated global10

motion as predictors to simplify motion estimation algorithms for11

state-of-the-art H.264/AVC video coding. We have constructed a12

prototype of SaVE and evaluated its performance with a pair of13

accelerometers, a digital compass, and their combination. Our14

experimental results show that SaVE can significantly reduce15

the computations of motion estimation while achieving equal or16

better video quality. Our results also show that SaVE has a17

strong noise-resistant capability. Therefore, it can be practically18

employed in real-world environments.19

Index Terms—Accelerometer, digital compass, H.264/AVC,20

motion estimation, MPEG, sensor, video encoding.21

I. Introduction22

V IDEO CAMERAS have already become a standard23

component of Smartphones and other handheld devices.24

Amateur video clips captured by such cameras have populated25

social network portals, e.g., YouTube, and enabled amateur26

journalism, e.g., iReport. Yet, video capturing on mobile27

devices is compute-intensive and therefore power-hungry. A28

key compute-intensive module in video encoding is motion29
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estimation. Motion estimation seeks to identify blocks from 30

neighboring video frames that match each other and subse- 31

quently eliminate the redundancy. In modern video coding 32

standards such as H.264/AVC, motion estimation may examine 33

a video frame for block matching from multiple reference 34

frames and using multiple block sizes [1]. Not surprisingly, 35

the power and computational cost of motion estimation in 36

H.264/AVC is posing a significant challenge to video captur- 37

ing on mobile devices. Our solution toward addressing this 38

challenge is sensor-assisted video encoding (SaVE). SaVE 39

leverages low-power sensors to estimate camera movement 40

and subsequently apply the estimated camera movement to 41

significantly simplify motion estimation. 42

SaVE is motivated by the following observations. First, the 43

motion of an object in a video frame can be decomposed to 44

global motion introduced by the camera movement and local 45

motion introduced by the movement of the object itself. In 46

many video sequences, particularly in amateur-captured video 47

clips, global motion due to camera movement, particularly 48

rotation, is very common. Second, modern mobile devices 49

have embraced ultra-low-power and low-cost sensors including 50

digital compasses and accelerometers, e.g., HTC G1 [2] and 51

Nokia 5140 mobile phones [3]. These sensors can provide 52

accurate information regarding the camera movement. 53

In this paper, we conduct a comprehensive study of SaVE 54

in real-world environments and present solutions that sig- 55

nificantly improve motion estimation in such environments. 56

Fig. 1 shows the system structure of SaVE (an H.264/AVC 57

encoder incorporated with the proposed encoding scheme). 58

SaVE employs three combinations of sensors (as shown in 59

Table I) to estimate camera rotation. Using these estimations, 60

SaVE infers the global motion in the subsequent frames and 61

then utilizes the estimated global motion as “SaVE predictors” 62

in motion estimation. 63

We have built a prototype of SaVE using custom and com- 64

mercial sensors attached to a commercial camcorder. Extensive 65

experiments on the prototype have been conducted with dif- 66

ferent sensor combinations in various conditions, considering 67

external interference in particular. Our experimental results 68

show that, even with the simple prototype, SaVE can reduce 69

the complexity of the unsymmetrical-cross multi-hexagon-grid 70

search (UMHS) [4], [5] and enhanced predictive zonal search 71

(EPZS) [1], [6] motion estimation algorithms by up to 27% 72

while achieving even better video quality. To the best of our 73

knowledge, SaVE is the first publicly reported attempt in using 74
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TABLE I

Three Sensor Combinations are Used in this Paper

Sensor
Combination

SC1 SC2 SC3

Descriptions
Components Two accelerometers One compass plus one ac-

celerometer
One compass plus two ac-
celerometers

Vertical rotational estimation Use single accelerometer Use single accelerometer Use single accelerometer
Horizontal rotational estima-
tion

Use two accelerometers Use one compass Use one compass or two
accelerometers

Fig. 1. System structure of SaVE (an H.264/AVC encoder incorporated with
the proposed encoding scheme).

sensors to improve video encoding. It embodies a new research75

direction in multimedia processing that explicitly employs76

physical information obtained from sensors.77

Our previous papers [7], [8] presented earlier results on78

employing sensors to improve motion estimation for MPEG279

and H.264/AVC. In particular, [8] employed a noise-sensitive80

digital compass but had not evaluated SaVE’s resilience to the81

external noise. This paper presents a complete evaluation of82

SaVE and, in particular, the following new contributions over83

our previous paper.84

1) We discovered that the selective application of SaVE85

predictors provides a strong noise-resistant capability,86

confirmed by extensive evaluations. This enables SaVE87

to be practically employed in real-world environments.88

2) We demonstrated the effectiveness of intelligently89

switching between SaVE-based methods for camera90

movement estimation, i.e., switching between the digital91

compass and the accelerometers. This method allows92

more utilization of the detected global motion even if93

the digital compass is interfered.94

3) We conducted intensive evaluations on the different95

methods of utilizing SaVE predictors (i.e., predictor96

insertion strategies) and justified their effectiveness.97

The rest of this paper is structured as follows. In Section II,98

we outline the background information and related work in99

video coding. In Section III, we describe our method for100

camera movement estimation. The technical details of utilizing101

the estimated global motion with SaVE are explained in 102

Section IV. In Section V, we describe the constructed prototype 103

of SaVE. The experimental results based on the prototype 104

implementation are shown in Section VI. We discuss the 105

limitations and future work of SaVE in Section VII and 106

conclude in Section VIII. 107

II. Background and Related Work 108

In this section, we provide background information and 109

discuss related work. 110

A. Motion Estimation 111

1) Traditional Motion Estimation Algorithms: The sim- 112

plest motion estimation algorithm, namely, naı̈ve Full Search, 113

will exhaust all candidate blocks for identifying a matched 114

block. While the Full Search algorithm provides highest block 115

matching accuracy, it is extremely slow. Extensive research has 116

been conducted in exploring fast motion estimation algorithms. 117

Some algorithms attempt to reduce the number of searching 118

positions in block matching, e.g., three-step search [9], new 119

three-step search [10], four-step search [11], diamond search 120

[12], [13], cross-diamond search [14], kite cross-diamond 121

search [15], and others. Some others seek to reduce the number 122

of pixels used in the matching distortion calculations, e.g., 123

partial distortion search (PDS) [16], alternative sub-sampling 124

search algorithm [17], normalized PDS [18], adjustable PDS 125

[19], dynamic search window adjustment [20], and others. 126

There are also some hybrid methods combining multiple 127

techniques, e.g., motion vector field adaptive search technique 128

(MVFAST) [21], predictive MVFAST [22], UMHS [4], [5], 129

and EPZS [1], [6]. In particular, UMHS and EPZS can 130

reduce the computational cost of Full Search by 90% while 131

maintaining a fairly good rate distortion performance [1], [4]. 132

In this paper, we have used the implementation of UMHS 133

and EPZS in JM version 14.2 H.264/AVC reference software 134

as the “host” of our SaVE scheme and also as baselines for 135

evaluation. 136

2) Predictive Motion Estimation: An emerging feature of 137

state-of-the-art video encoding algorithms, such as UMHS and 138

EPZS, is predictive motion estimation. Instead of exhausting 139

all candidate blocks within a search range, predictive motion 140

estimation initially attempts a few promising predictors, and 141

applies simplified search patterns around the predictor with 142

a early-termination criterion [4], [6]. For example, the pre- 143

dictors used in UMHS and EPZS include median predictor, 144

corresponding block predictor, UPLayer predictor, and others 145
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[4], [6]. Among these predictors, the median predictor is146

believed to be more reliable [6]. A median predictor refers147

to the median motion vector of the top, left, and top-right148

(or top-left) neighbor blocks of the current block, which is149

frequently used as the initial search predictor and also for150

motion vector prediction encoding [6]. However, the predictors151

used in UMHS and EPZS are only estimated according to the152

spatial and temporal correlations between adjacent blocks and153

successive frames. These predictors have no knowledge about154

the real camera movement, thus the global motion is caused.155

3) Global Motion Estimation and Compensation: Some156

video encoding algorithms have also considered the global157

motion introduced by the camera movement with the employ-158

ment of global motion estimation and compensation (GMEC).159

GMEC usually describes the global motion in parametric160

motion models. It is to be noted that GMEC would require161

extra computations, e.g., the GMEC employed in MPEG4 [23].162

There is a considerable amount of low-complexity GMEC163

methods proposed, e.g., [24] and [25] only use a small subset164

of pixels in motion estimation and calculating motion model165

parameters; [26] allows fast estimation of model parameters166

from coarsely sampled motion vector field. Moreover, there167

are some other methods employed GMEC for predictive168

motion estimation, e.g., [27]–[29]. However, H.264/AVC has169

not adopted GMEC in the standard due to its suboptimal170

rate-distortion performance [30] and increased complexity [30]171

(while [31] proposed a much simpler method that offers better172

overall rate-distortion performance). SaVE takes advantage of173

the concept of traditional GMEC but obtain the real global174

motion introduced by camera in a new way, i.e., by using175

reliable sensors. This renders SaVE being able to achieve even176

better results than original H.264/AVC, reported in Section VI177

later.178

B. Low-Power Video Coding179

According to [32], the methods for reducing the video180

encoding complexity for H.264/AVC can be classified into181

three categories: 1) reducing the number of search points182

in motion estimation, e.g., the fast motion estimation and183

predictive motion estimation we mentioned in Sections184

II-A1 and II-A2; 2) reducing the number of candidate encoding185

modes for a given macroblock, e.g., [33]–[35]; and 3) applying186

efficient mode selection by improving the optimization cost187

function, e.g., [32] itself proposed a simplified Lagrange188

multipliers cost function for reducing the number of operations189

in mode selection. A particular benefit of the third category, as190

claimed by [32], is that any reduction achieved by this category191

can also be applied on the top of the other two categories. Our192

proposed SaVE scheme falls into the first category so it can193

be combined with other low-power video encoding schemes,194

e.g., [32], to achieve further complexity reductions.195

C. Sensors196

1) Related Work on Sensors-Assisted Applications: Some197

sensor-based work has been done in the areas of vehicle198

movement detection and computer vision. For example, the199

European patent application EP1921867 presented the idea of200

using vehicle movement information detected by sensors to 201

assist video compression [36]. The authors of [37] proposed a 202

method for estimating autonomous vehicle movement by using 203

cameras together with inertial sensors. However, [36] and [37] 204

focused on detecting vehicle movement and vehicle-mounted 205

cameras. Moreover, [38] proposed a method for object shape 206

and camera motion recovery by using a gyro sensor, focusing 207

on applications in the area of computer vision. To the best 208

of our knowledge, no research has been done on SaVE for 209

handheld devices except our work. 210

2) Sensors in SaVE: SaVE employs low-power and low- 211

cost sensors to estimate camera rotation. Assuming negligible 212

linear acceleration of the camera, a single tri-axis accelerom- 213

eter can provide the vertical angle of the camera with respect 214

to ground. Two accelerometers placed apart can measure rota- 215

tional acceleration, both horizontally and vertically. However, 216

accelerometers are unable to provide the absolute angle of the 217

device. In contrast, a tri-axis digital compass can directly mea- 218

sure both horizontal and vertical angles. In this paper, SaVE 219

uses readings from a single accelerometer for the vertical 220

angle. For the horizontal angle, we have implemented SaVE to 221

use either absolute angle readings from single digital compass 222

or a pair of accelerometers. It is important to note that, com- 223

pared to accelerometers, digital compasses are easily subject 224

to external influence from nearby magnets and ferromagnetic 225

objects, and radio interference (e.g., from mobile phones). 226

Therefore, care must be taken when employing the digital 227

compass in SaVE. This problem is addressed in Section IV. 228

3) Power Consumptions of Sensors: The power consump- 229

tion of digital compasses and accelerometers is very small 230

in comparison to the power required for video encoding by 231

processor. For example, the commercial digital compass board 232

with an embedded tri-axis accelerometer used in our proto- 233

type consumes 66 mW [39]. According to our measurements, 234

our custom sensor with a pair of accelerometers consumes 235

15 mW (without Bluetooth). Furthermore, much of the power 236

is consumed by components that will be obsolete when the 237

sensors are properly integrated into the camera or mobile 238

device. For example, the Honeywell HMC6042/1041Z tri-axis 239

compass solution consumes a total of 23 mW [40], [41], and 240

each of the KXM52 tri-axis accelerometers used in our custom 241

Orbit Platform sensor board [42] consumes less than 5 mW 242

[43]. Such power overhead is negligible compared to that of 243

a H.264/AVC encoder, which is typically over a Watt [44]. 244

D. Summary 245

In this section, we have discussed related concepts in video 246

coding and sensor technology that can be summarized as 247

follows. The traditional GMEC methods are suboptimal in 248

their rate-distortion performance and they would also increase 249

the encoding/decoding complexity. The existing predictive 250

motion estimation methods have no knowledge about the real 251

camera movement, thus the global motion is caused. The 252

increasing availability of sensors in mobile devices brings us 253

an emerging opportunity to reduce video encoding complexity 254

in a new way—SaVE. SaVE naturally combines the concept 255

of GMEC and predictive motion estimation; it detects the real 256

camera movement by reliable sensors, infers global motion 257
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Fig. 2. SaVE prototype with two physical sensor boards.

in the camera imager, and subsequently employs the inferred258

global motion as predictors to simplify motion estimation. We259

next introduce SaVE’s global motion estimation procedure in260

Section III and describe how SaVE predictors are applied in261

Section IV.262

III. Proposed Global Motion Estimation263

The global motion of a camera is contributed by two264

kinds of motion: 1) intended camera motion, e.g., panning,265

and 2) unwanted camera motion, e.g., hand jiggles. While266

[45] reported a method that integrates a digital stabilizer for267

dealing with unwanted camera motion, we present in this268

paper a new approach to handle the intended camera motion.269

The intended global motion of a camera is caused by linear270

movement and rotational movement. Linear movement, i.e.,271

translational movement, is introduced by the camera location272

change, while rotational movement is introduced by tilting273

or panning the camera. It is worth noting that there are274

currently no sensor technologies for reliable estimating linear275

movement. Therefore, SaVE addresses rotational movement276

only. In this paper, the global motion to be detected by sensors277

is described by a global movement vector (GMV ), which278

specifies both vertical and horizontal movements of objects279

between two successive frames due to camera rotation.280

A. Rotational Change Estimation281

In this paper, we have used two physical sensor boards, de-282

fined as Sensor Combination 1 (SC1) and Sensor Combination283

2 (SC2), as shown in Fig. 2. Both SC1 and SC2 are attached to284

the camcorder used in our prototype. We have also employed285

an additional “logical” sensor combination, defined as Sensor286

Combination 3 (SC3), which uses the sensor readings of the287

digital compass of SC2 and the two accelerometers of SC1288

for estimating the camera motion. All of the three sensor289

combinations use single accelerometers to estimate the vertical290

camera rotation, but use different sensors to estimate the291

horizontal rotation as described in Table I.292

1) Vertical Rotation Estimation: By measuring the static293

gravity acceleration, a single accelerometer is sufficient to294

obtain the vertical angle, the camera or mobile device is tilted295

at with respect to the earth [7]. For example, let ax, ay, and 296

az denote the earth’s gravity on acceleration measurement in 297

three axes, ax will increase and az will decrease when the 298

camera rolls down from the illustrated position in Fig. 2. As 299

a result, SaVE calculates the vertical angle Vn at the video 300

frame Fn as follows: 301

Vn = tan−1

⎧⎨
⎩ ax√

a2
y + a2

z

⎫⎬
⎭ . (1)

The vertical rotational change �θv for two successive video 302

frames Fn and Fn−1 is then calculated as follows: 303

�θv(n) = Vn − Vn−1. (2)

The above approach is adopted in all of SC1, SC2, and SC3. 304

2) Horizontal Rotation Estimation: SaVE can calculate 305

the horizontal rotation by using two accelerometers (SC1), 306

a digital compass (SC2), or a digital compass plus two 307

accelerometers (SC3), as shown in Table I. 308

a) Using Two Accelerometers (SC1): A single ac- 309

celerometer cannot provide the horizontal angle, but two 310

accelerometers placed apart from each other, as for SC1, can 311

measure the angular acceleration of the device. According to 312

[7], we can calculate the angular acceleration (ω̇) of the device 313

in the horizontal direction using measurements from the two 314

accelerometers as follows: 315

ω̇ =
Sy − S1y

d
(3)

where S0y and S1y are the acceleration measurements in the y 316

direction of the two sensors, respectively. Let �θh denote the 317

horizontal rotational change, assuming the time between two 318

subsequent frames is t, for frame n we have 319

�θh
= ω · t

�θh
=

�θh(n) − �θh(n−1)

t
= ω̇ · t

�θh(n) − �θh(n − 1) =
S0y − S1y

d
· t2

�θh(n) − �θh(n−1) = k · (S0y − S1y).

So we have 320

�θh
= �θh(n) = �θh

(n − 1) + k · (S0y − S1y). (4)

Therefore, by using the two accelerometers, we can calcu- 321

late the horizontal movement of each video frame according 322

to [7]. 323

b) Using Digital Compass (SC2): With the digital 324

compass used in SC2, SaVE can directly obtain the horizontal 325

angle of the camera with respect to the magnetic north. 326

Therefore, the horizontal rotational movement �θh between 327

frame Fn and Fn−1 can also be easily obtained as follows: 328

�θh(n) = Hn − Hn−1 (5)

where Hn and Hn−1 are the horizontal angles at frame Fn and 329

Fn−1 from the compass readings. 330
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Fig. 3. From camera movement to projection movement in the video frame.
(a) Initial camera position. (b) Camera rotates by �θ.

c) Using Digital Compass and Accelerometers (SC3):331

SC3 uses either a digital compass or two accelerometers to332

estimate the horizontal rotation, depending on whether the333

digital compass readings are affected by external interference,334

i.e., SC3 use the compass (of SC2) as the default sensor to es-335

timate camera rotation, but will switch to using accelerometers336

(of SC1) when the compass readings are affected by external337

noise. The details of this switching procedure will be given in338

Section IV-C.339

B. GMV Estimation340

In this section, we describe how we convert the estimated341

camera rotation (from SC1, SC2, or SC3) to the pixel move-342

ments in the camera’s imager.343

1) From Rotational Change to Global Movement: When344

a camera rotates, the projection of an object in the view345

to the camera image sensor also moves, as illustrated in346

Fig. 3. The projection movement can be described by the347

GMV. To calculate the GMV, we must understand the camera348

characteristics and build an optical model. In Fig. 3(a) and349

(b), O denotes the optical center of the camera image sensor,350

f denotes the focal length, and l denotes the distance between351

the object to the camera lens; B is a point in the object. In352

Fig. 3(a), the projection P of point B on the image sensor353

is located at a distance of d from O; θ is the angle between354

the line BP and the perpendicular bisector of the camera lens.355

The situation when the camera is turned by �θ is shown in356

Fig. 3(b), where the new projection P’ is located at d’ from O.357

The movement for projections of point B can be calculated as358

�d = d − d ′. From the optical model, we can easily calculate359

d and d ′ with360 {
d = f · tan θ

d ′ = f · tan(θ + �θ).
(6)

Hence, the projection movement �d can be calculated as361

follows:362

�d = d − d ′ = f · {tan(θ + �θ) − tan θ}. (7)

As �θ is usually very small between two successive frames363

of a video clip, we have364

tan(θ + �θ) − tan θ ≈ �θ · d(tan θ)

dθ
= �θ · sec2(θ). (8)

Thus, we can obtain �d as follows: 365

�d ≈ f · �θ · sec2(θ). (9)

Typically, θ ranges between zero and half of the field of view 366

of the lens. Hence, for all camera lenses except for extreme 367

wide-angle and fisheye ones, θ is reasonably small and �d 368

can be further reduced to 369

�d ≈ f · �θ · sec2(θ) ≈ f · �θ. (10)

From the above formulas, we have that f and �θ are 370

adequate to calculate the movement. We can then convert the 371

movement in pixels (denoted by f ’) by dividing the calculated 372

distance by the pixel pitch of the image sensor. In this 373

paper, f is obtained by using available calibration tools based 374

on MATLAB from [46] to [48]. It is to be noted that the 375

calibration is not part of SaVE motion estimation, and will 376

not be required by real applications. 377

2) GMV Per Reference Frame: Having the horizontal and 378

vertical rotation �θh and �θv, we can calculate the GMV for 379

two successive frames Fn and Fn−1 as follows: 380

GMVn(�dh, �dv) = (f ′ · �θh, f
′ · �θv) (11)

where �dh and �dv are the movement of the projection along 381

the horizontal and vertical directions, respectively. Multiple 382

reference-frame motion vector prediction is an important fea- 383

ture of H.264/AVC. For a video frame Fn, a single GMV 384

calculated for merely its previous reference frame Fn−1 is 385

inadequate to obtain accurate predictors in other reference 386

frames. To address this problem, SaVE dynamically calculates 387

the reference-dependant GMVs. For example, when using Fn−k 388

as the reference frame, the vector GMVk
n for the frame Fn can 389

be calculated as follows: 390

GMVk
n (�d

h
, �d

v
) =

n∑
i=n−k

GMVi. (12)

IV. SaVE Motion Estimation 391

A. SaVE Predictor 392

To improve motion estimation, we can use the calculated 393

GMV (�dh, �dv) in UMHS and EPZS as a SaVE predictor 394

(SPx, SPy), where SPx = x + �dh and SPy = y + �dv, 395

x and y are the horizontal and vertical coordinates of the 396

current block to be encoded. Fig. 4 demonstrates the benefits 397

of using GMV -based SaVE predictor; Fig. 4(a) shows, for a 398

given block (gray), the original predictor has no knowledge 399

of global motion and, therefore, it may require a fairly large 400

search window to identify the best matching block (black). In 401

contrast, the SaVE predictor based on GMV will only need a 402

much smaller search window, as shown in Fig. 4(b). This will 403

be confirmed in our experimentation, reported in Section VI 404

later. 405

It is important to note that the SaVE predictor obtained 406

from sensors may not be absolutely accurate in all cases 407

and there are exceptions, e.g., when encoding a region with 408

extensive local motion, or when the compass is interfered 409

by external noise (as mentioned in Section II-C2). In these 410



IE
EE

 P
ro

of

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

Fig. 4. SaVE predictor reduces the search window of motion estimation.
(a) Original predictor. (b) SaVE predictor.

Fig. 5. MCOST-based application.

cases, the original predictors in UMHS or EPZS may achieve411

better results than SaVE. Therefore, we selectively apply SaVE412

predictors as follows.413

B. Selective Application of SaVE Predictors414

1) MCOST-Based Application: The most straightforward415

selective application is to use SaVE predictors only when they416

lead to reduced MCOST (block distortion plus the cost ofAQ:1 417

encoding motion vectors) than the original predictors defined418

in UMHS and EPZS, as shown in Fig. 5.419

2) Location-Based Application: We have also found that420

where in a frame to apply a SaVE predictor is important. We421

next examine two basic strategies to decide where in a frame422

to apply a SaVE predictor. The first, called arbitrary strategy,423

is adopted in our preliminary work for MPEG2 reported in424

[7]. The arbitrary strategy employs the SaVE predictor as the425

only predictor for all blocks in a video frame, so its drawback426

is that it excessively emphasizes on the detected global motion427

while ignoring the local motion and the spatial correlation of428

adjacent blocks.429

We next devise selective strategies that consider both the430

global and local motion. As mentioned in Section II-A2, since431

the median predictor (usually used as the initial predictor) in432

UMHS and EPZS highly relies on the top and left neighbors433

of the current block, it can “spread” the current motion vector434

tendency to the remaining blocks in the lower and right part435

of the video frame. We have examined a number of selective436

strategies, i.e., attempting the insertion with different number437

of blocks and in different locations of the video frame. For438

example, Fig. 6 shows that we have inserted SaVE predictors439

in the blocks located at the top two boundaries and left two440

boundaries of the frame. When a SaVE predictor is inserted441

into a block, the SaVE predictor is attempted for motion442

Fig. 6. Selective strategy—two-row/column strategy.

estimation first before attempting those original predictors in 443

UMHS or EPZS. Consequently, selective strategies can spread 444

the estimated global motion from sensors to the entire frame 445

by using a mixture of the SaVE predictor and the original 446

predictors. Intensive evaluations of the insertion strategies are 447

presented and analyzed in Section VI-B. 448

We have also discovered that the selective applications (both 449

MCOST-based and location-based) of SaVE predictors provide 450

particular benefits under strong external interference, i.e., a 451

SaVE predictor will be only attempted into a few locations in 452

a frame, and it will be only adopted if it produces a smaller 453

MCOST than the original predictors. Our experimental results 454

showed that the selective application of SaVE predictors 455

provide good noise-resistant capability of SaVE, confirmed 456

by our experiments presented in Section VI-D1. 457

C. Switching Between Accelerometers and Compass (SC3) 458

In addition to the selective application of SaVE predictors, 459

we also propose another optional method that is able to utilize 460

the detected camera rotation even if the compass is interfered, 461

based on SC3 as described in Section III-A2(c). 462

Basically, SC3 will use the compass of SC2 as the default 463

sensor to calculate the horizontal rotation, but will switch to 464

using the two accelerometers of SC1 when the compass is 465

interfered. For example, when an abnormal reading is detected 466

from the compass (indicating the compass is interfered), SaVE 467

will discard the compass data and use the accelerometer data 468

as substitutions. In this paper, we have adopted a simple yet 469

effective detection method for abnormal compass readings, 470

which utilizes the coherence between the GMVs calculated 471

by the compass and by the accelerometers at the same frame, 472

and the coherence between the GMVs of the compass at two 473

successive frames. This means that we consider a compass 474

reading is abnormal if the current GMV calculated by the 475

compass is significantly different from the corresponding GMV 476

calculated by accelerometers, as well as the neighbor GMV 477

calculated by the compass. We experimentally determined 478

that the threshold is 60 for detecting the abnormal GMV 479

of compass. The evaluation and analysis of this SC3-based 480

method is given in Sections VI-D2 and VI-D3. 481

V. Prototype Implementation 482

A. Hardware Implementation 483

To evaluate SaVE, we implemented a prototype using a 484

consumer-grade camcorder and two physical sensor boards 485
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Fig. 7. Prototype implementation of SaVE. (a) Commercial board with a digital compass and a tri-axis accelerometer (left) and the in-house built board with
dual tri-axis accelerometers (right) used in SaVE. (b) Camcorder and the digital compass and dual accelerometers bundled for video capturing. (c) Prototype
in working.

(Figs. 2 and 7) as mentioned in Section III-A. One sen-486

sor board (SC1) was custom-designed and carries two tri-487

axis accelerometers. The other board (SC2), the OceanServer488

Technology OS5000 [39], is a commercial tri-axis digital489

compass with an embedded tri-axis accelerometer. It is to be490

noted that the SC3 described in Sections III-A2(c) and IV-C is491

not a physical sensor board but a logical combination of SC1492

and SC2. Our custom sensor (SC1) outputs raw accelerometer493

readings and we perform the necessary calculations offline.494

The commercial sensor (SC2) computes and reports the abso-495

lute horizontal and vertical angles using its tri-axis compass496

and tri-axis accelerometer, respectively. We firmly attach both497

sensor boards to the camcorder as shown in Fig. 7.498

B. Data Collection and Synchronization499

While it is straightforward to synchronize video and sensor500

readings on an integrated hardware implementation, e.g., com-501

mercial mobile devices, our hardware prototype is limited in502

that the video and its corresponding sensor data are collected503

separately; video were captured directly by the camcorder504

and the sensor data were captured by the digital compass505

or accelerometers but stored by a laptop. Thus, we have506

to manually synchronize them. The synchronization between507

accelerometer data and video clips has been introduced in [7].508

We have used a similar approach to synchronize the compass509

data and the video clips.510

C. Overhead511

SaVE is implemented in approximately 260 lines of C code512

in addition to the H.264/AVC JM software. Such simplicity513

makes it easy to be incorporated into practical encoding514

systems.515

VI. Experimental Evaluation516

A. Experimental Setup and Design517

To evaluate SaVE, experiments were carried out using the518

standard H.264/AVC reference software (JM version 14.2),519

which implements up-to-date UMHS and EPZS algorithms.520

The test clips were encoded at a frame rate of 25 f/s and521

a bitrate of 1.5 Mb/s, using Baseline profile, variable block522

sizes, and five reference frames on a personal computer with523

2.66 GHz Intel Core 2 CPU. Rate-distortion optimization was524

turned on. Intra period was set to 10. Peak signal-to-noise ratio525

(PSNR) was used as an objective measurement of the encoded526

video quality.527

TABLE II

Descriptions of Clips in ‘‘Normal Cases’’

Object (Local Motion) Still Moving
Camera
(Global Motion)
Keep almost still Clip01 Clip02
Medium vertical movement Clip03 Clip04
Faster vertical movement Clip05 Clip06
Medium horizontal movement Clip07 Clip08
Faster horizontal movement Clip09 Clip10
Irregular movement Clip11 Clip12
Camera Extensive Local Motion
Irregular movement Clip13
Irregular movement Clip14

TABLE III

Descriptions of Clips in ‘‘Difficult Cases’’

External Interference Mobile Moving Microwave
Signal Metal

Camera object
(Global Motion)
Keep almost still Clip15 Clip17 Clip19
Irregular movement Clip16 Clip18 Clip20

We have systematically captured 20 test clips (namely, 528

Clip01–Clip20) with a resolution of 720 × 576. They fall into 529

two categories. The first category, namely, “normal cases,” 530

contains 14 clips (Clip01–Clip14) with different combinations 531

of global (camera) and local (object) motion. The second 532

category, namely, “difficult cases,” includes six clips (Clip15– 533

Clip20) captured under external interference. The descriptions 534

of these clips are shown in Tables II and III (the detailed 535

descriptions are given in the remaining sections later). 536

Using the techniques proposed in Section IV, we have 537

implemented and tested three SaVE-enhanced methods with 538

the three sensor combinations presented in Table I. The first 539

method, denoted as SaVE/SC1, uses SC1 to calculate and 540

utilize the SaVE predictor according to Sections IV-A and 541

IV-B. The second method, denoted as SaVE/SC2, uses the 542

techniques described in Sections IV-A and IV-B as well but 543

it employs SC2 to calculate the SaVE predictor. The third 544

method, denoted as SaVE/SC3, will use SC2 as default but 545

will switch to SC1 for horizontal rotation estimation in certain 546

conditions, as described in Section IV-C. When the above 547

SaVE-enhanced methods are applied to UMHS or EPZS, they 548

are denoted as UMHS+SC1, UMHS+SC2, EPZS+SC3, and 549

so on. 550
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Fig. 8. Evaluations on insertion strategies. (a) Clip11. (b) Clip12.

Our experiments are divided into three parts: 1) we first551

examine the insertion strategies we presented in Section552

IV-B2; 2) we next evaluate SaVE’s performance in “normal553

cases,” where there are different kinds and levels of global554

motion introduced; and 3) we finally test SaVE in “difficult555

cases,” where significant external interference is introduced.556

B. Insertion Strategies557

We have tested a number of insertion strategies according558

to Section IV-B2. This evaluation is based on UMHS using559

SaVE/SC2. The tested insertion strategies are described in560

Table IV. Fig. 8 presents their PSNR performance (vertical561

axis) for Clip11 and Clip12 based on UMHS. The search562

window size (SWS) used in the encoding ranges from ±3563

to ±32 (horizontal axis).564

We have observed that the SaVE predictor is very effective565

with the help of the median predictor as described in Sec-566

tion IV-B2, e.g., it will achieve a noticeable amount of PSNR567

gains over UMHS even if we insert it into only one block568

(“1-block” strategy). However, we observed decreased PSNRs569

compared to UMHS when there are too many SaVE predictors570

inserted, e.g., “5-row/col.” strategy, “10-row/col.” strategy, and571

arbitrary strategy. This is because that these strategies are572

increasingly eliminating the existing local motion and spatial573

correlations of adjacent blocks while introducing overmuch574

global motion. We have observed that the “2-row/col.” strategy575

achieves the best tradeoff in this regard as shown in Fig. 8. We576

believe the “2-row/col.” strategy particularly improves UMHS577

due to the following two reasons. On one hand, it benefits from578

a reasonable use of SaVE predictors that reflect the global579

motion estimated from sensors. On the other hand, it respects580

the local motion and spatial correlation of adjacent blocks by581

using the original UMHS predictors. We have observed similar582

results of the “2-row/col.” strategy for EPZS and for other test583

clips. Therefore, this strategy is adopted in the remaining of584

the experiments.585

C. Normal Cases: Clip01 to Clip14586

In the evaluation for normal cases, we test the improvement587

of SaVE with UMHS and EPZS over original algorithms. The588

global motion in Clip01–Clip14, as described in Table II, was589

introduced by the camera movement while the local motion590

TABLE IV

SaVE Predictor Insertion Strategies Examined Based on UMHS

Insertion Strategies SaVE/SC2 Predictor Inserting Position
1-block Top-left block
3-block Three top-left blocks

1-row/col. Top one boundary blocks and left one boundary
blocks

2-row/col. Top two boundary blocks and left two boundary
blocks (as shown in Fig. 6)

3-row/col. Top three boundary blocks and left three boundary
blocks

5-row/col. Top five boundary blocks and left five boundary
blocks

10-row/col. Top ten boundary blocks and left ten boundary
blocks

Arbitrary strategy All blocks in the video frame

was introduced by walking pedestrians (a snapshot of the 591

captured videos is shown in Fig. 11). 592

Figs. 9 and 10 show the PSNR improvement achieved by 593

SaVE in comparison to the original UMHS and EPZS. For 594

Clip06, Clip07, and Clip11, we show the results for SWS 595

ranging from ±3 to ±32. For other clips, we only show SWS = 596

±3 to ±20, as the current prototype of SaVE will not provide 597

gains over this range. We also present the results regarding 598

the computation reduction realized by SaVE in Table V (for 599

clips with vertical movement only) and Fig. 12 (for clips that 600

contain horizontal movement). We measure the computation 601

load of encoding with the motion estimation time. 602

1) Still Camera: Clip01 and Clip02: Clip01 and Clip02 603

were captured with the camera held still. As expected, the 604

SaVE-enhanced algorithms cannot achieve higher PSNR over 605

the original UMHS and EPZS (Fig. 9), since there is almost 606

no camera movement. Nevertheless, SaVE will not deteriorate 607

the performance. 608

2) Vertical Movement: Clip03 to Clip06: For Clip03– 609

Clip06, as all of SaVE/SC1, SaVE/SC2, and SaVE/SC3 use a 610

single accelerometer to calculate the vertical rotation, we only 611

present in Fig. 9 the results obtained by using SaVE/SC2. The 612

results show that UMHS+SC2 and EPZS+SC2 achieve higher 613

PSNR (up to 2.59 dB) than original UMHS and EPZS. 614

Table V shows, for Clip03–Clip06, the speedup the 615

UMHS+SC2 and EPZS+SC2 achieved over the originals while 616

obtaining equal or even higher PSNRs. We have selected a 617
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Fig. 9. PSNR comparisons for UMHS, EPZS, and SaVE-enhanced UMHS and EPZS (clips with vertical movement). Note that because SaVE/SC1, SaVE/SC2,
and SaVE/SC3 are identical in vertical motion estimation, we only show the results of SaVE/SC2.

TABLE V

PSNR Gains and Speedup Achieved by SaVE-Enhanced UMHS

and EPZS When SWS = ±3 and SWS=±11 for Clips with Vertical

Movement

SaVE-Enhanced UMHS

Clip
SWS = ±3 SWS = ±11

PSNR Gains (dB) Speedup (%) PSNR Gains (dB) Speedup (%)
03 +0.15 22.87 +0.01 7.10
04 +0.31 15.77 +0.03 6.86
05 +0.12 23.59 +0.10 8.72
06 +0.06 27.00 +0.11 13.80

SaVE-enhanced EPZS

Clip
SWS = ±3 SWS = ±11

PSNR Gains (dB) Speedup (%) PSNR Gains (dB) Speedup (%)
03 0.01 12.07 +0.04 3.08
04 +0.54 7.65 0 3.50
05 +0.14 10.03 +0.09 5.71
06 +0.07 11.44 +0.03 4.58

very small SWS (= ±3) and a relatively large SWS (= ±11)618

for comparison. It is apparent that UMHS+SC2 with SWS =619

±3 (or SWS = ±11) can usually obtain a higher PSNR than620

original UMHS with SWS = ±7 to ±9 (or SWS = ±13 to621

±19). This results in up to 27% time saving over the original622

algorithms (since we can apply a very small SWS with SaVE623

to achieve good video quality).624

3) Horizontal Movement: Clip07 to Clip10: For clips of625

“normal cases” that contain horizontal movements, we show626

the results of SaVE/SC1 and SaVE/SC2 only, as according627

to our results, SaVE/SC3 will obtain the same results with628

SaVE/SC2 since there is no external interference introduced.629

As shown in Fig. 10, both SaVE/SC1 and SaVE/SC2 can 630

obtain significant PSNR gains over the originals. It is apparent 631

that SaVE/SC2 outperforms SaVE/SC1 since the digital com- 632

pass is more accurate in estimating the horizontal movement. 633

4) Irregular Movement: Clip11 and Clip12: Again, Fig. 10 634

shows that SaVE can achieve considerable PSNR gains over 635

the original algorithms. When medium SWSs are used, the 636

PSNR gains are typically from 0.4 dB to 1.6 dB. 637

5) Extensive Local Motion: Clip13 and Clip14: Clip13 and 638

Clip14 were captured in a busy crossroad with significant local 639

motion introduced by fast moving vehicles and slow moving 640

pedestrians at various distances to the camera. As shown in the 641

figure, SaVE/SC2 can still outperform the original algorithms, 642

although not as much as Clip03–Clip12. The improvement is 643

less in SaVE/SC1 because it partially relies on the movement 644

of its previous frame [7]. The reduction in improvement is 645

expected because SaVE only provides extra information about 646

the global motion. 647

For Clip07–Clip14, we found that in some cases the SaVE 648

with SWS = ±3 (or SWS = ±11) can achieve higher PSNR 649

than the original algorithms with SWS = ±10 (or SWS = ±20). 650

In Fig. 12, we present and compare the speedups achieved 651

by SaVE/SC1 and SaVE/SC2 while achieving 0.01–0.42 dB 652

higher PSNR over the original algorithms. The figure shows 653

that the speedups are up to 24.78%. It also shows that using the 654

digital compass is more efficient than the two accelerometers 655

overall. For Clip13 and Clip14, SaVE/SC1 will not achieve 656

speedup, however, we found that it can improve the PSNR by 657

up to 0.75 dB while consuming the same computation. 658

Fig. 11(a) and (b) shows a sample frame (frame 76) 659

of Clip11 decoded by EPZS (27.01 dB) and EPZS+SC2 660
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Fig. 10. PSNR comparisons for UMHS, EPZS, and SaVE-enhanced UMHS and EPZS (clips that contain horizontal movement).

Fig. 11. Results of Clip11. (a) Sample picture decoded by EPZS with SWS = ±11 (27.01 dB). (b) Sample picture decoded by EPZS+SC2 with SWS = ±11

AQ:2

(31.42 dB). (c) Motion vector residues produced by EPZS compared to a 64 × 64 full search. (d) Motion vector residues produced by EPZS+SC2 compared
to a 64 × 64 full search.



IE
EE

 P
ro

of

CHEN et al.: SENSOR-ASSISTED VIDEO ENCODING FOR MOBILE DEVICES IN REAL-WORLD ENVIRONMENTS 11

Fig. 12. Speedup comparisons for SaVE/SC1 and SaVE/SC2 for Clip07–Clip14 (clips that contain horizontal movement). (a) Based on UMHS. (b) Based
on EPZS.

(31.42 dB) with same SWS (= ±11). Due to the camera661

movement, the picture decoded by EPZS is blurred (as EPZS662

has no knowledge about the global motion). It is obvious that663

the picture decoded by EPZS+SC2 has much better quality664

than EPZS. Fig. 11(c) and (d) shows, for the same clip, the665

distributions of motion vector residuals produced by EPZS and666

EPZS+SC2 (SWS = ±11) compared to a 64 × 64 Full Search667

(SWS = ±32). Assuming that the 64 × 64 Full Search has668

produced very accurate motion vectors (Section II-A1), the669

figures show that the resulted motion vectors of EPZS+SC2670

are closer to the Full Search compared to original EPZS, and671

therefore EPZS+SC2 can yield higher PSNRs than EPZS.672

D. Difficult Cases: Clip15 to Clip20673

In this evaluation, we first test the noise-resistant capability674

of SaVE/SC1 and SaVe/SC2 based on EPZS in Section VI-D1.AQ:3 675

In Section VI-D2, we further evaluate SaVE/SC3 and compare676

it with SaVE/SC2 since it is based on SaVE/SC2. In this677

evaluation, we intended to see SaVE’s performance in realistic678

environments, in particular under external interference, e.g., a679

phone call comes when the user is capturing a clip with his680

or her mobile phone. Specifically, Clip15–Clip20 were taken681

with various sources of external interference introduced. These682

clips are described in Table III. We placed a mobile phone (that683

was receiving calling signals) closely to the compass while684

capturing Clip15 and Clip16. When capturing Clip17 and685

Clip18, interference was introduced by waving a metal object686

around the compass. We captured Clip19 and Clip20 next687

to a microwave oven to test the SaVE/SC2 with microwave688

interference.689

1) SaVE/SC1 and SaVE/SC2 with Selective Use of SaVE690

Predictors: As an example, Fig. 13 shows the horizontal691

GMVs calculated by accelerometers of SaVE/SC1 and the692

digital compass of SaVE/SC2 for Clip16 and Clip19. We can693

see that the GMVs calculated by the compass are significantly694

affected by the external interference. This is not surprising,695

since the compass is a magnetic sensor designed to measure696

the earth’s weak magnetic field. Therefore, the compass of SC2697

is more easily affected by nearby ferromagnetic objects and698

electromagnetic interference. On the contrary, the accelerom-699

eters of SC1 are relatively immune to this interference.700

Fig. 14 compares the average PSNR obtained by original701

EPZS and by the selective application of SaVE predictors702

(SWS = ±11), as described in Section IV-B. To show the703

benefits of the selective application, we have also shown in704

the figure the results of SaVE without the selective application705

as a reference, i.e., SaVE predictor is inserted into all blocks706

Fig. 13. Horizontal GMVs calculated by the two accelerometers and the
digital compass under external interference. (a) Clip16. (b) Clip19.

(arbitrary strategy) and without comparisons to the original 707

predictors in EPZS, denoted by EPZS+SC2*. We discovered 708

that the performance of EPZS+SC2* is below EPZS+SC1 and 709

EPZS+SC2, and even the original EPZS. On the contrary, 710

EPZS+SC2 (with the selective application of SaVE predictors) 711

still can outperform the original EPZS, especially when there 712

is global motion introduced (Clip16, Clip18, and Clip20). For 713

clips without global motion (Clip15, Clip17, and Clip19), 714

EPZS+SC2 can still obtain the same average PSNR as the 715

original EPZS. As explained in Section IV-B, the resulted 716

SaVE predictor is only attempted in selected positions of a 717

video frame and it will only be adopted when it is “better” 718

than the original predictors (i.e., when it produces smaller 719

MCOST). This explains why the performance of SaVE is 720

always above the original algorithms, even under significant 721

interference. 722

As an example, Fig. 15 shows the PSNRs of two segments 723

of Clip16 (frames 40–100, and frames 160–230). The compass 724

readings of SC2 for these two segments are particularly 725

affected by the interference (refer to Fig. 13). It shows that 726
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Fig. 14. PSNR comparisons for EPZS and SaVE-enhanced EPZS, for
Clip15–Clip20 (clips that were taken under external interference).

EPZS+SC2 may obtain lower PSNRs than EPZS+SC1 in some727

cases, e.g., from frames 80 to 100 (marked with Portion A in728

Fig. 15), and from frames 210 to 230 (marked with Portion B729

in Fig. 15) since the accuracy of the SaVE/SC2’s predictor is730

somewhat affected by the interference. But at least EPZS+SC2731

will obtain the similar PSNR as the original EPZS. Besides,732

EPZS+SC2 can still provide benefits for other portions with-733

out, or with less interference. As a result, EPZS+SC2 can still734

slightly outperform EPZS+SC1 overall, as shown in Fig. 14.735

2) SaVE/SC3 (Logical Sensor Combination): In this sec-736

tion, we have tested SaVE/SC3 described in Section IV-C. Due737

to space limitations, here we only present the results of Clip16738

as an example (while we observed similar results for other test739

clips).740

From Fig. 15, we have observed that in many cases741

SaVE/SC2 can obtain at least similar PSNR to original EPZS,742

even under very strong interference, e.g., from frames 175 to743

200 (refer to Fig. 13). This is because that SaVE/SC2 is able744

to discard significantly interfered compass readings and use745

the original predictors in EPZS as substitutions in such cases.746

In some other cases, the slightly interfered compass readings747

can still provide partial knowledge of global motion, e.g., the748

PSNRs of EPZS+SC2 is slightly higher than the original EPZS749

in Portion A and in Portion B as shown in Fig. 15. However,750

this improvement of EPZS+SC2 in Portion A and Portion B is751

smaller than that of EPZS+SC1 (since the accelerometer is not752

interfered thus providing more knowledge of global motion).753

Fig. 16 shows the results of SaVE/SC3, which is expected754

being able to utilize more detected global motion, and com-755

pares its performance to SaVE/SC2 (since it is based on756

SaVE/SC2). According to our results, the overall improvement757

of SaVE/SC3 over SaVE/SC2 is not much (around 0.03 dB).758

For example, Fig. 16(a) shows that the PSNR of EPZS+SC3759

is similar to EPZS+SC2 for most frames. The small amount760

of overall improvement is expected because SaVE/SC3 and761

SaVE/SC2 process most video frames in the same way.762

However, for some other frames, SaVE/SC3 is able to provide763

noticeable gains, especially in portions where EPZS+SC2 is764

somewhat interfered by insignificant noise, e.g., results of765

Portion A displayed in Fig. 16(b) and results of Portion B766

displayed in Fig. 16(c). We have also observed similar results767

for other tested clips. Therefore, we believe SaVE/SC3 can768

be served as an attractive option to SaVE/SC1 and SaVE/SC2769

when sufficient sensors are available.770

3) Summary: According to the results shown in the above771

two sections, our analysis and conclusion can be summarized772

as follows.773

a) Due to the hardware features of SC1, SaVE/SC1 is774

not sensitive to external interference. In some cases,775

SaVE/SC1 is able to obtain better results than SaVE/SC2 776

for certain frames. 777

b) SC2 is easily subject to external interference. However, 778

SaVE/SC2 is able to use original predictors in UMHS 779

or EPZS when SC2 is significantly interfered. Due 780

to the better estimation for horizontal camera rota- 781

tion, SaVE/SC2 still can slightly outperform SaVE/SC1 782

overall. 783

c) In some cases, SaVE/SC3 is able to utilize more global 784

motion detected by sensors than SaVE/SC2 by switch- 785

ing between SaVE/SC1 and SaVESC2. Such being the 786

case, SaVE/SC3 can provide gains in some frames over 787

SaVE/SC2, though the overall improvement is not much. 788

d) We believe all of the three SaVE-based methods, i.e., 789

SaVE/SC1, SaVE/SC2, and SaVE/SC3, can be em- 790

ployed in real-world environments due to their ro- 791

bust noise-resistant capabilities. In particular, SaVE/SC2 792

and SaVE/SC3 can obtain better overall results than 793

SaVE/SC1, but they would require integration of two 794

types of sensors, i.e., both accelerometer and digital 795

compass. In most cases, we believe SaVE/SC2 is good 796

enough to deal with the external interference and also it 797

requires fewer sensors than SaVE/SC3. 798

VII. Limitations and Discussions 799

A. Limitations and Future Work 800

While we show that SaVE can reduce video encoding 801

complexity, we acknowledge that our paper is limited in the 802

following aspects. 803

First, our paper is limited in the manually synchronization 804

of video frames and sensor data (Section V-B). This will 805

of course introduce considerable amount of errors and noise 806

and therefore deteriorates SaVE’s performance. However, an 807

industrial implementation of SaVE will readily solve this 808

problem with access to built-in digital sensors. 809

Second, SaVE cannot handle the linear movement (includ- 810

ing zooming) adequately at this moment (Section III). Thus, 811

more sophisticated algorithms or more sensors, e.g., gyro- 812

scope, may be required to accurately separate linear motion 813

from rotation. 814

Third, we have only used a translational model for global 815

motion estimation. In our future work, we will attempt to 816

build an affine or perspective model to estimate the global 817

motion. However, we expect these advanced models would 818

require extra computations. The tradeoff between the model 819

complexity and power consumptions will be studied in our 820

future work as well. 821

B. Discussions 822

1) Sensors in Mobile Devices: As is apparent from 823

Section VI, the digital compass-based SaVE implementation 824

(SaVE/SC2) performs better than the accelerometer-only im- 825

plementation (SaVE/SC1), in particular when horizontal cam- 826

era rotation dominates. However, accelerometers are cheaper 827

and lower-power than digital compasses because of advance- 828

ment in micro-electro-mechanical systems (MEMS) technolo- 829

gies. Apart from digital compasses and accelerometers, a 830
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Fig. 15. PSNR comparisons for SaVE/SC1 and SaVE/SC2 for affected portions in Clip16. (a) Frames 40–100. (b) Frames 160–230.

Fig. 16. PSNR comparisons for SaVE/SC2 and SaVE/SC3 for Clip16. (a) Full range. (b) Portion A (frames 80–100). (c) Portion B (frames 210–230).

number of phones, e.g., iPhone4, are becoming equipped831

with low-power MEMS gyroscopes, which could also be well832

utilized in video encoding on mobile devices by employing a833

similar scheme to SaVE.834

2) Applications of SaVE: In the consumer electronics in-835

dustry, sensors are increasingly integrated into mobile devices836

for multiple purposes. For video phones that already have the837

sensors, e.g., HTC G1, SaVE would not impose any additional838

hardware overhead or power overhead (since the sensors are839

consuming power even if without SaVE). SaVE simply utilizes840

the information already available from preexisting sensors841

for another purpose—video encoding. As another example,842

many cameras utilize accelerometers and/or a compass to843

calculate camera angle changes for image stabilization. Given844

this context, we can consider SaVE as a “free lunch” for video845

capturing on sensor-rich mobile devices.846

VIII. Summary and Conclusion847

We reported a novel video encoding scheme, SaVE, that848

utilizes sensors to improve H.264/AVC motion estimation on849

mobile devices. We built a prototype of SaVE and conducted850

extensive evaluations on it with different sensor combinations851

and various predictor insertion strategies. We showed that852

SaVE is able to significantly reduce computational costs853

required by video capturing on mobile devices, which can854

be readily achieved by using a voltage/frequency scalable855

processor to save energy and prolong the battery life. We also856

demonstrated that SaVE has a strong noise-resistant capability857

when employed with particular predictor insertion strategies.858

Therefore, SaVE can be practically employed in real-world859

environments even if there exists external interference.860

SaVE improves global motion estimation, i.e., motion due to 861

a moving video camera. The handheld video capturing devices, 862

intended for user-created, amateur video capturing, inherently 863

experience significant camera motion. Due to the explosive 864

growth in video-enabled small devices such as video phones, 865

the creation of video by amateur users is increasingly popular. 866

The phenomenal success of portals such as YouTube has 867

demonstrated such a social trend. It was one of the motivations 868

of our research and also attests the practical significance and 869

broader impact of our work. 870

Our paper has shown that the system-level computational 871

complexity thus energy consumption can be effectively re- 872

duced by leveraging the synergy between different modalities, 873

acceleration, angular rotation, and vision in our case. We 874

believe that there is plenty of redundant computation in a 875

multi-component multimedia device such as a video phone, 876

which could be removed by exploiting a similar methodology 877

presented in this paper. 878
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