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ABSTRACT

Violin practice in a home environment, where there is of-
ten no teacher available, can benefit from automatic music
transcription to provide feedback to the student. This pa-
per describes a high performance violin transcription system
with three main contributions. First, as onset detection is
an important but challenging task for automatic transcrip-
tion of pitched non-percussive music, such as from the violin,
we propose an effective audio-only onset detection approach
based on supervised learning. The proposed approach out-
performs the state-of-the-art methods substantially. Second,
we introduce the visual modality, i.e., bowing and fingering
of the violin playing, to infer onsets, thus enhancing the
audio-only onset detection. We devise automatic and real-
time video processing algorithms to extract indicative fea-
tures of onsets from bowing and fingering videos. Third,
we evaluate state-of-the-art multimodal fusion techniques
to fuse audio and visual modalities and show this improves
onset detection and transcription performance significantly.
The audio-visual fusion based violin transcription system
provides more accurate transcribed results as learning feed-
back even in acoustically inferior environments. With effi-
cient and fully automatic audio-visual analysis components,
the system can be easily deployed in a home environment.

Categories and Subject Descriptors

H.5.5 [Sound and Music Computing]: Signal analysis,
synthesis, and processing, Systems; 1.4.8 [Scene Analysis]:
Motion, Tracking, Sensor fusion

General Terms

Algorithms, Design, Experimentation, Human Factors
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1. INTRODUCTION

Automatic music transcription (AMT), which converts
music audio into MIDI (piano-roll) notation, can provide ef-
fective feedback when students practice violin at home [27].
AMT includes two basic steps: onset detection and pitch
estimation. Onset detection finds the note boundaries (on-
sets) in time domain to segment a violin piece into individual
notes. Subsequently, pitch estimation estimates pitch values
of each note segment. In violin music, most of the notes are
monophonic and very few are double-stops (notes with two
pitches) or triple-stops (notes with three pitches). Due to
this characteristic, pitch estimation in violin music is largely
a monophonic pitch estimation problem, which is consid-
ered solved. However, because of the soft transient around
note onsets in pitched non-percussive (PNP) sounds, such as
from the violin, onset detection is recognized as a difficult
task. State-of-the-art audio-only onset detection approaches
in PNP sounds reveal poor performance [8].

In this paper, we address the onset detection problem
in violin music and show how to build a high performance
audio-visual music transcription system to assist violin prac-
tice at home. The main contributions include the following:

e We propose an audio-only onset detection approach
based on supervised learning. Gaussian Mixture Mod-
els (GMM) are used to classify onset and non-onset
frames based on Mel-Frequency Cepstral Coefficients
(MFCCs). The proposed onset detection approach
outperforms the state-of-the-art methods [4, 9, 14, 18]
by about 10% F-measure in less noisy conditions.

e To enhance the audio-only onset detection, we intro-
duce the visual modality of the violin playing, includ-
ing bowing and fingering, to infer onsets. We devise
real-time and fully automatic algorithms to extract in-
dicative features of onsets from bowing and fingering
videos captured in a home environment.

e We evaluate state-of-the-art multimodal fusion tech-
niques, including feature level (early) fusion and de-
cision level (late) fusion, to combine the audio-visual
modalities for onset detection and violin transcription.
For violin onset detection, the audio-visual fusion based
approach outperforms the proposed audio-only approach
by 5% to 18% F-measure in different noisy conditions.
Thus, the overall transcription accuracy is improved
by 14% to 20%.

The remainder of this paper is organized as follows. In
Section 2, the system framework and methodology are out-
lined. Section 3 and 4 detail the audio and video processing
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Figure 1: System diagram of audio-visual music transcription for violin practice at home.

components. We then discuss multimodal fusion techniques
for audio-visual fusion in Section 5. Section 6 evaluates our
system performance which is followed by comments on re-
lated work (Section 7) and a closing summary (Section 8).

2. SYSTEM DESCRIPTION

As illustrated in Fig. 1, when students practice a vio-
lin piece by following a reference notation, the audio-visual
transcription system records the audio input stream by a mi-
crophone, and captures two video input streams by two ordi-
nary webcams. Then its audio and video processing units ex-
tract indicative features of onsets (detection functions) from
the input audio-visual streams. Subsequently, multimodal
data fusion techniques are applied to fuse audio and visual
modalities for more accurate onset detection. Pitch estima-
tion is conducted at last to produce the MIDI (piano-roll)
notation of the played violin music. The comparison of the
transcribed results and the reference notation shows the vio-
lin students which notes are played correctly /wrongly. Our
preliminary evaluations have shown that such feedback is
important for beginning violin learners [27].

3. AUDIO PROCESSING

This section describes the audio-only violin transcription
sub-system, which is to be integrated with the visual modal-
ity, described in Section 4. In the audio-only sub-system, we
propose a supervised learning based onset detection method,

which outperforms the state-of-the-art methods [4, 9, 14, 18]
significantly. We employ a violin specific audio-only pitch
estimator to conduct pitch estimation [18].

3.1 Audio-only Onset Detection
3.1.1 Existing Onset Detection Methods

As recognized in the literature, onset detection in violin
sounds is a difficult problem, because of the soft transient
around note boundaries in audio in terms of energy, pitch,
etc. Existing methods for onset detection rely on certain
characteristic features of the audio signal to derive a de-
tection function, which is a one-dimensional function with
peaks indicating sudden changes (onset times) in an audio
signal. The detection function can also be viewed as deci-
sion scores at different time instances where larger values
indicate higher probability of onsets. Onsets are detected as
the local maxima of a detection function by a peak-picking
algorithm [8]. Some features that have been used for de-
riving a detection function include pitch change [9], equal
loudness change [14], phase change [4], spectrum correlation
change [18]. Nevertheless, as observed in [8], those feature
based onset detection methods produced poor accuracy for
PNP sounds, e.g., violin music.

In [15], Lacoste and Eck proposed a supervised learning
approach with Feed-Forward Neural Networks to classify on-
set and non-onset times based on raw spectrogram features.
This approach is superior to existing feature based methods,



because it uses supervised learning to separate the distribu-
tion of audio spectra of onset and non-onset frames. It is
capable of modeling general characteristics in various audio
dynamics if enough training data is available. However, La-
coste and Eck employed raw spectrograms as audio features,
which have a very high number of dimensions (about 800).
According to the curse of dimensionality, exponentially more
training data are needed to fully train a Feed-Forward Neu-
ral Network. What’s worse, with high dimensional input
features and many hidden neurons, training such a neural
network and using it for classification are very time consum-
ing. All these drawbacks prevent this method from being
employed in practical applications.

3.1.2 The Proposed Onset Detection Approach

In this paper, we propose a supervised learning approach
for onset detection by using Gaussian Mixture Models (GMM)

to classify onset and non-onset frames based on Mel-Frequency

Cepstral Coefficients (MFCCs).

MFCC features can reflect the difference between onset
and non-onset frames of violin audio signals. MFCCs model
the spectrum envelop in a perceptual and concise way [17].
As can be seen around onsets A in Fig. 2(a), the spec-
trograms around onset times are more noisy or less har-
monic than the spectrograms within a note. This differ-
ence between onset and non-onset frames is reflected in the
corresponding MFCCs. On the other hand, if the tran-
sient between certain two notes is noiseless (see onset B in
Fig. 2(a)), derivatives of MFCCs still reflect the harmonic
change at the note boundary, hence indicating the onset
times. Clear difference between MFCC features of onset and
non-onset times can be observed in Fig. 2(b), where MFCCs
and their first, second order derivatives are drawn for each
audio frame.

The probability of the onset or non-onset label, I € {l,,{,},
for each frame can be modeled as a random variable drawn
from a probability distribution of the MFCC features f;. As
GMM is known to work well in modeling the distribution of
MFCCs [22], we propose to use GMM to model the random
variable of onset or non-onset label for each frame, which is
defined as:

Mt
PU(8]0") = wip (£, 3) (1)
i=1

where f; is MFCC feature vector at time ¢; ©' = {wﬁ, ub, >t
| 1 <4< M'} is the parameter set for the GMM with label
I; wl, ul and 2! are the weight, mean vector and covari-
ance matrix of each Gaussian mixture respectively; M' is
the number of mixtures; P'(f;|©') is the probability that f;
is drawn from feature set with label [ given a GMM charac-
terized by the parameter set ©'.

In the system, we use Expectation-Maximization (EM)
algorithm [21] to train two GMMs to profile the distribution
of onset and non-onset features. To assemble the training
data, we select features {fi|to, — 7 < t < t, + 7} around
each onset frame at t, to form the onset feature set Fl"7
and select the rest to form the non-onset feature set F'.

To derive a detection function based on onset and non-
onset GMMs, a series of MFCC features in time with un-
known labels, F' = {f|0 < ¢t < T}, is extracted from the
incoming audio piece with the same settings as the training
MFCC features. The detection function from audio is then
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Figure 2: An onset detection approach by MFCCs
and GMM. Onsets are human annotated as circles.

calculated as:
D, (t) = Rect(Pl"(ft|@l°) — pln (ft|®l")) (2)

where Rect(z) = x if z > 0, and Rect(z) = 0 otherwise. As
shown in Fig. 2(c), peaks in the audio detection function,
D, (t), indicate onset times.

In our system, a Mel-scale filter bank with 81 filters is
applied and 15 DCT coefficients are truncated as MFCCs.
The first order and second order derivatives in time are ap-
pended to form a 45-dimensional MFCC feature vector for
a frame. Based on experiments, the sampling rate of 22.05
kHz, frame length of 1024 and hop size of 341 samples for
the audio signal are found optimal to extract MFCC fea-
tures. Under this setting, the sampling rate of MFCCs or
the audio detection function is about 64.7 Hz. A diagonal
covariance matrix is used for each Gaussian mixture. The
parameter settings, with 7 as 2 frames, M’ and M'» as 256
mixtures, yields the best results for onset detection.

As shown in the experiments, this approach outperforms
state-of-the-art onset detection methods. In addition, due
to the low dimensional feature space of MFCCs (45 dimen-
sions) and the efficient modeling approach by GMM, the
proposed onset detection method is computationally effic-
net, thus suitable for practical applications, such as the au-
tomatic violin transcription system built in this paper.

3.2 Audio-only Pitch Estimation

As pitch estimation in violin music is largely monophonic
pitch estimation and is considered a solved problem, a vio-
lin specific audio-only pitch estimator developed in [18] and
evaluated in [25] is employed in our system implementation.
The overall accuracy is 95% in estimating pitch values of our
database, described in Section 6.1.



4. VIDEO PROCESSING

In violin playing, note onsets are highly correlated with
visual cues of the player, such as the reversals of bowing and
finger press/release of a string [3, 25]. Therefore, it is natu-
ral to include bowing features (bow reversal moments) and
fingering features (finger press and release moments) to im-
prove audio-only onset detection, thus improving automatic
violin transcription as a whole.

We employ two ordinary webcams (Microsoft VX3000) to
capture bowing and fingering videos along with the audio
recording, in 30 frames per second (fps), with the resolution
640 x 480. One camera is placed in front of the player on
a tripod to capture a side view of the bowing. The other
camera is placed above the violin body on a tripod (or fixed
on the ceiling) to capture a birds eye view of the fingering
from the violin neck to the bridge. It should be noted that
the camera placement is not critical as long as the bow-
ing/fingering is captured in the video. The movements of
the player within certain limits do not degrade the system
performance. In short, the two webcams can be easily set
up at home, which maximizes the practicality of the system.

4.1 Bowing Analysisfor Onset Detection

The right hand of the violin player holds the bow during
playing, thus the hand motion reflects the bowing motion
in terms of moving direction and speed. Therefore, a hand
tracking algorithm is devised to obtain the sequence of the
bow moving direction. Sudden changes (around 180 degrees)
of the moving direction reflect bow reversal moments.

Hand tracking is achieved using Kalman filter framework [6]
with measurements obtained by optical flow [23] and a skin-
color Gaussian model [24]. Based on a prior database, the
skin-color Gaussian model is pre-calculated in RGB color
space as N (uc, Xc), Eq. (3). The distance dis(cg,y) of a
pixel at (z,y) with RGB color ¢cz,y = [r ¢ b] to the skin-
color Gaussian model is measured as Mahalanobis distance,
Eq. (4). If dis(ca,y) < «, the pixel is considered of skin color.
The optimal value of « is found to be 20 in the experiments.

fte = [172 104 45] 3)
3. = [764 508 180; 508 359 138; 180 138 91]

dis(Cz,y) = (Cay — HC)Egl(Cz,y - ,“C)T (4)

Before hand tracking, global motion compensation is con-
ducted by referring to the first frame to compensate the body
translation of the player, which lessens the influence of the
body movement on bowing features for onset detection.

A hand state at time ¢ is defined as hy ¢ = [T+t Yt,t det St.e),
where z:: and y:: are the pixel coordinate values of the
hand in the frame, d;; is the hand moving direction in ra-
dian units and s+ is the speed of the hand moving in pixel
units. The predicted state at time ¢t + 1 is computed based
on the prediction equation:

hit1t = Ap(hee) +bp-w
An(hi ) = [ @t + 56, - cos(dse) (5)
Yo+ See-sin(det) dee Se ]

where A}, is the non-linear state switching function, w is the
system noise defined as a one-dimensional random variable
with unit normal distribution, A(0,1), and by is a four-
dimensional row scale factor, set as unit in the system im-
plementation.
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Figure 3: Illustration of bowing analysis for onset
detection. Onsets are human annotated as circles.

At next time instance t + 1, a measurement of the hand
state hw,t+1,t+1 is obtained by Algorithm 1. Then the pre-
dicted hand state hiy1,: is updated as h¢41,+41 by taking
the current measurement into consideration:

hip141 = hey1e + Gr(higgen — hugie) (6)

where h¢; 1+ is the predicted hand state from Eq. (5), the
second term is the difference between the measured state
and the predicted. The Kalman gain, defined as G, (hy,:) =
Bn - he ¢, controls how much the filter is influenced by the
current measurement in relation to the predicted state. The
optimal value of (3, is found to be 0.5 in our system.

Algorithm 1: Hand measurement.

Input: Frame at time t
Output: Hand measurement h,’t,t

1 Get an optical flow map with sparse motion points [23];

2 Only retain the motion points of skin-color;

3 Vote in bow moving direction to find the direction
category with the most motion points;

4 Compute the average position, direction, and motion
speed of the motion points in the selected direction
category as the hand measurement h,’t,t and return h;,t.

After hand tracking, bow moving direction sequence is ob-
tained as d(t) (Fig. 3). To model the bow reversal moments,
we derive the detection function of bowing direction, Dy (t),
as the absolute value of the first order derivative of d(t):

Dy(t) = abs(d'(t)). (7)

In Dy(t), peaks indicate the bow reversal moments, i.e., on-
sets reflected by visual bowing features. As shown in Fig. 3,
high correlation between underlying onset times and bow
reversal moments can be observed.

The hand tracking algorithm is robust against body move-
ment of the violin player, background clutter and disturb-
ing moving objects in a capturing field with non-skin color
background. Implemented in C++ with OpenCV library [1],
the algorithm tracks the bowing hand automatically in real-
time. Hand tracking results are illustrated in Fig. 3 with
motion features and tracked hand state shown as arrows in
light (yellow) and dark (red) colors, respectively (see videos
of the tracking results online').

"http://www.comp.nus.edu.sg/ bingjun/avamt . html



4.2 Fingering Analysisfor Onset Detection

In order to detect the finger press and release moments in
a fingering video, we propose a two-stage fingering analysis
algorithm using Kalman filter framework [6]. First the four
violin strings are detected, i.e., the starting point (at the
violin neck) and the ending point (at the violin bridge) of
each string. Then each string is searched to pinpoint the fin-
ger positions by using the pre-calculated skin-color Gaussian
model, Eq. (3).

The state of string 4, ¢ € {1,2,3,4}, at time ¢ is defined
by a starting point and an ending point, s} , = [pi% pz:f],
where a point pi,t = [Zt,t Ye,te dit Stt]. xe,e and ye, are the
pixel coordinate values of p;; in a video frame, d;; is the
moving direction in radian units and s¢ ; is the moving speed
in pixel units of pt:. The predicted state for string i at time
t 4+ 1 is computed based on the prediction equation:

Si+1,t = [ Pzil,t_ szl,t ] ) (8)
= [As(pi) +brw Ap(pyy) +byw ]
where Ay and by are defined the same as A} and by, in the
previous section (see Eq. (5)).
At time t+1, the string state Sti+1,t+1 is measured for each
string by Algorithm 2. Then the predicted string state Si+1,t

is updated as s§+17t+1 by taking s;’;rl,tﬂ into consideration
(Eq. 6).

Algorithm 2: String measurement.

Input: Frame at time ¢

Output: String measurement s;ft

Obtain the binary edge image by Canny edge detector;

Thin edges into one-pixel width in the edge image;

Apply Hough line transform to detect lines [13];

Among all detected lines, vote in line direction to find

the strings with the dominant line direction;

5 In the string direction category, extract lines not farther
than ~ pixels from each other as the detected strings;

6 Search along each string ¢, in the edge image, to find

W N =

the turning points, (mzi, yzz) and (mzf, ny), at the
violin neck and the violin bridge, respectively;
7 Compute (di’;, si%) and (dif, szf) with respect to

St_1,¢—1 to form s} ; and return s; ;.

After the extraction of st in each frame, we further apply
Algorithm 3 to detect only one active finger position f; for
each sy in every frame.

Algorithm 3: Detection of active finger positions.

Input: Frame at time ¢, and s, ¢ €{1,2,3,4}
Output: Active finger positions f;

1 Starting from the bottom string s;;

2 For each si, search along the string from pi’z to pi’l to
pinpoint a finger position (z%,%") with skin-color;

3 If there is no f{~' on si™' with distance smaller than §
to (z*,y%), then set the distance of (z%, ") to pi'Z as ff
and go to step 5; otherwise search further on s;

4 If pi’l is reached, set fi as zero and go to step 5;

5 If i < 4, start searching si“ with principles described
in step 2, 3 and 4; otherwise, return f;, i € {1,2,3,4}.
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Figure 4: Illustration of fingering analysis for onset
detection. Onsets are human annotated as circles.
String numbers are in a bottom-up order.

From the fingering video, we extract four active finger
position sequences f(t), i € {1,2,3,4}, each for one string
(shown in Fig. 4). A sudden change of the active position
(finger pressing position) on any string indicates a finger
press or release moment, i.e., an onset timing. To model
this, we define the detection function of violin fingering as
the summation of the first order derivative of f(t):

Dy(t) =3 abs(f"(1)) (9)

where peaks in Dy(t) indicates the onset times.

However, because of the limitations of a 2D video, false
positives may happen when a finger tip is above but not
touching the string. Based on violin domain knowledge,
most of the violin notes are monophonic and very few are
double-stops or triple-stops. Therefore, peaks in Dy (t) with
fewer active finger positions are more likely to be true onset
times, and vice versa. To lessen the influence of false active
finger positions, we divide Dy (t) by the number of active
finger positions at each time instance:

S abs(£ (1))
S I(fi(t) +1

where I(z) is an indicator function with value 1 when = > 0,
and 0 otherwise. As shown in Fig. 4, high correlation can
be observed between the fingering detection function and
underlying note onsets.

Implemented in C++ with OpenCV library [1], the pro-
posed algorithm successfully tracks strings and detects ac-
tive finger positions in real-time. v = 10 and § = 15 are
found optimal for Algorithm 2 and 3 in the experiments.
The global motion of the violin body or the player does not
influence the fingering analysis algorithm, because we only
detect the relative positions of the fingers on the strings.
Analysis results are shown in Fig. 4. Tracked strings are
marked as bright (yellow) lines with bright (yellow) dots as
starting and ending points. All candidates of finger positions
are marked by small dark (green) dots, and active finger po-
sitions are marked by large bright (yellow) dots (see videos
of the analysis results online, footnote 1 in Section 4.1).

Dy(t) = (10)



5. AUDIO-VISUAL FUSION

In this section, we discuss how to fuse audio-visual data of
the violin playing to enhance onset detection. We evaluate
state-of-the-art multimodal fusion techniques of both fea-
ture level (early) fusion and decision level (late) fusion [12].
The fused audio-visual detection function is expected to be
more indicative of onsets than the one from a single modal-
ity. During the fusion process, audio-visual features are as-
sumed to be synchronized, as audio and visual streams are
captured simultaneously during the violin playing and the
incoming audio and visual samples are time stamped in the
software level. Visual features (detection functions with 30
Hz sampling rate) are linearly interpolated in time domain to
be of the same sampling rate as the audio features (MFCCs
or detection functions with 64.7 Hz).

5.1 FeaturelLevel Fusion

In feature level fusion, we evaluate the feature concatena-
tion (FC) technique [12]. For each time index ¢, we concate-
nate the audio feature f;, bowing feature Ds(t), and finger-
ing feature D¢(t) to form a new audio-visual feature fu, ¢
in a higher dimensional space (47 dimensions, with 45 from
MFCCs and 2 from bowing and fingering detection func-
tions). Before concatenation, each attribute of the audio
and visual features is normalized into [0, 1].

To derive the audio-visual detection function, the same
approach as audio-only case is applied. Firstly, two GMMs
with parameters ©lo, and O are trained by the EM al-
gorithm to model the distribution of onset and non-onset
audio-visual feature sets F'¢ and Fé;ﬁ respectively. Flo and
Fln are assembled in the same way as the audio-only case.
Further, with the incoming audio piece and video streams,
the audio-visual detection function is calculated as follows
based on a time series of audio-visual features with unknown
labels, Fop = {fau |0 <t <T}:

DI5(t) = Rect(PL (fau,t|O%) — Pin(faue|O)) (1)

where the superscript fc of D};ﬁ(t) means feature concate-
nation fusion.

In data fusion literature [16], cross-modal correlation tech-
niques, such as Principle Component Analysis (PCA), La-
tent Semantic Indexing (LSI), Canonical Correlation Anal-
ysis (CCA), etc., have been proposed to derive the correla-
tion among modalities or reduce dimensionality in the fused
feature space. However, based on the violin domain knowl-
edge in our application, the correlation between audio and
visual modalities has already been derived by audio process-
ing and video tracking algorithms, because the audio-visual
features extracted are both indicative of onset times. In ad-
dition, the dimensionality of the audio and visual feature
spaces has also been reduced (45 dimensions for MFCCs, 1
dimension for bowing features and 1 dimension for fingering
features). Therefore, for feature level fusion of our system,
feature concatenation is directly applied without bothering
any cross-modal correlation technique.

Feature level fusion allows early correlation between au-
dio and visual modalities. In addition, it requires only one
training phase to derive the overall audio-visual detection
function. However, the caveat is that if the feature separa-
bility between onset and non-onset classes for a particular
modality is poor, feature level fusion may corrupt the higher
dimensional space after fusion and make its feature separa-
bility worse than the best single modality before fusion.

5.2 Decision Level Fusion

In decision level fusion, we evaluate both a rule-based fu-
sion technique, i.e., linear weighted sum (LW) fusion, and
a classification based fusion technique, i.e., Support Vector
Machine (SVM) based fusion [10]. For each fusion technique,
onset detection functions or decision scores from the three
data streams, D4 (t), Dy(t) and Dy(t), are firstly normalized
into [0,1], and then fused to derive an overall decision score
series Dqy(t) as the audio-visual detection function.

In comparison with feature level fusion, decision level fu-
sion has the same representation for each modality, i.e., on-
set decision scores in our system, which makes the fusion
easier to conduct. In addition, decision level fusion is scal-
able in terms of modalities, which is not easily achievable
for feature level fusion. However, decision level fusion fails
to utilize the feature level correlations between modalities.
It normally requires an additional training phase, which is
less efficient than feature level fusion.

521 Linear Weighted Sum Fusion

For each violin piece, given the normalized decision scores
from the three data streams, D.(t), Dy(t) and Dy(¢), the
linear weighted sum fusion calculates the overall decision
score series as:

Deiy(t) = wy” - Dalt) +wy - Dy(t) +wf” - Dy(t)  (12)

where wi | wt, and wifw are the weights for the correspond-

ing data streams; and the superscript lw of DX (t) means
linear weighted sum fusion. After fusion, DY is normalized
into [0, 1] as the final audio-visual detection function.

The rationale behind using the linear weighted sum fu-
sion is that each peak indicative of an onset in any single
data stream will be revealed in the fused detection func-
tion with the peak value multiplied by the corresponding
weight. Therefore, if the detection function of each data
stream is noiseless, the fusion will complement among the
data streams and produce an audio-visual detection func-
tion which could reveal onsets missed by an individual data
stream. However, if there are false peaks in the detection
function from any single data stream, the false peaks will
also propagate to the fused one, thus making the overall
detection function more noisy.

Linear weighted sum fusion is computationally inexpen-
sive, whereas its fusion performance is sensitive to the com-
bination weights, of which the optimal values can only be
found based on extensive experiments.

5.2.2 SVM based Fusion

Multimodal fusion can also be considered as a pattern
classification problem [10]. In our application, scores from
individual data streams can be viewed as input patterns to
be recognized as onsets or non-onsets. Among classifica-
tion based fusion methods, Support Vector Machines (SVM)
[7] have been found effective in multimodal fusion litera-
ture [10], where SVM outperformed other evaluated clas-
sifiers, including Multilayer Perceptrons, k-Nearest Neigh-
bours, etc. In our system, SVM is further evaluated to show
its effectiveness in multimodal fusion for onset detection and
violin transcription.

To evaluate SVM based fusion in our system, decision
scores from three data streams, Dq(t), Dy(t) and Dy (t), are
concatenated at each time t to form a decision vector series
D(t) = [Da(t) Du(t) Ds(t)]F. Then the training data of
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onset frames.

SVM for onset and non-onset classes are selected from D(t)
in the same way as training GMM.

With the training data, the SVM firstly maps features into
a higher dimensional space by a mapping function, ® : " —
§R"I7 n < n'. SVM then finds the optimal linear separating
hyperplane in ®*, H(w,b) = {x| w” - x + b = 0}, with
the largest distance to the marginal data (support vectors)
of either class, where x, w and b are vectors in R

During the recognition, given an input decision vector D!
with unknown label [, the decision value is obtained as:

D(D}) = $(D))" - w+b (13)

In our implementation, a radial basis function is used as the
kernel function:

K(D},D}) = oD} - @(Dij)l

. (14)
= exp(—3|D; — D} ||*)
Since D(D}) is an uncalibrated value, and not a probabil-
ity, it cannot be used as the fused decision score. Therefore,
we further calculate a calibrated value from it as the audio-
visual decision score by the method proposed in [19]:
1

svm _ svm Iy
Da'u (t) - Da'u (Dt) - 1—|—exp(AD(Di) +B) (15)

where A and B are estimated scalars by minimizing the neg-
ative log-likelihood function using training data and their
decision values; and the superscript svm of D, (t) means
SVM based fusion. After normalization, D3y (t) is used as
the audio-visual detection function obtained by SVM based
fusion.

In pattern classification literature, SVM based fusion is
considered superior to linear weighted sum fusion because
of its capability in finding a non-linear yet optimal sepa-
rating hyperplane based on the training data. As shown in
Fig. 5, the onset and non-onset score vectors are not lin-
early separable. Therefore, an optimal non-linear separat-
ing hyperplane of SVM is potentially superior to a linear
separating plane produced by the linear weighted sum fu-
sion. The non-linearity of SVM is desirable when the noise
pattern in a particular modality is consistent enough for
SVM to generalize well, in which case SVM may fuse useful
information of different modalities effectively while mostly
discarding noisy patterns. As observed in our experimen-
tal results, SVM based fusion performs the best among all
evaluated fusion techniques.

5.3 Audio-Visual Violin Transcription

After multimodal fusion, onset times are detected by a
peak picking algorithm. This approach finds the local max-
ima from a detection function D(¢) subtracted by a series of
thresholds &(¢). This process is illustrated in Fig. 1 as the
onset time peaking. The thresholds are dynamically derived
from the detection function based on median filtering [8]:

0(t) =6+ X - median(D(t — W), ..., D(t + W)) (16)

where § is the base threshold, whose best value is different
for various onset detection functions; A is the ratio threshold
tuned as 0.7 for all methods during experimentation. W is
the half window length for the median filter, and is tuned to
be 4 experimentally.

After onset detection, a whole violin piece is segmented
into individual notes. Then an energy based activity de-
tector is used to find the most active portion in energy of
the audio signals within each note. The audio-only pitch
estimator described in Section 3.2 is applied to that portion
to calculate the pitch values. If the active portion is less
than a ratio (experimentally found to be 30%) of the whole
note duration, that note is considered silent, and no pitch
estimation is conducted for it.

After pitch estimation, a MIDI (piano-roll) notation of a
violin piece is obtained as the learning feedback to violin
students. Each note of the piece is parameterized by its
starting time (its onset), ending time (onset of the next note)
and pitch values.

6. EVALUATION

In this section, different onset detection approaches with
several fusion techniques are evaluated. To compare with
state-of-the-art methods for onset detection, implementa-
tions of the phase change based method (Phase) [4], pitch
change based method (Pitch) [9], equal loudness change based
method (Loudness) [14], and spectrum correlation change
based method (Correlation) [18] are evaluated on the same
audio-visual violin database. In addition, by combining dif-
ferent onset detection approaches with the same audio-only
pitch estimation method, described in Section 3.2, the over-
all transcription performance is evaluated.

6.1 Audio-Visual Violin Database

The evaluation of different approaches for onset detection
and music transcription is conducted based on an audio-
visual database with 36 violin pieces of 6340 notes. All
pieces are recorded in an ordinary room (SNR=24dB) with
the same audio and visual settings described in the previous
sections. The selected pieces cover a wide range of violin
playing styles, e.g., vibrato, legato, staccato, double stop,
etc. The tempo of the pieces ranges from slow to fast. Each
piece is recorded twice, once without vibrato and once with
vibrato playing style. Human annotation is carried out by
trained musicians as the evaluation ground truth. To further
evaluate the usefulness of the visual modality in noisy con-
ditions for violin transcription, SNR of the original database
is reduced to 15, 0, and -5dB with additional white noise.

6.2 Evaluation Metric

For onset evaluation, a detected onset within 50 millisec-
onds to the left or right of a human annotated onset is con-
sidered correctly detected. Three metrics are used to eval-
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Figure 6: Performance comparison of different onset detection approaches.

uate performance of onset detection. They are precision,
recall and the balanced F-measure, where precision is the
percentage of correctly detected onsets over all detected on-
sets, and recall is the percentage of correctly detected onsets
over all annotated onsets.

In violin transcription evaluation, a note is correctly tran-
scribed by the system, if its starting time, ending time and
pitch values are all correctly detected. Accuracy is used
to evaluate transcription approaches. It is calculated as the
percentage of correctly transcribed notes over all annotated
notes.

6.3 Experimental Results

During evaluation, the grid search method is applied on
the parameter combination space of each onset detection
and transcription method to find the best F-measure or ac-
curacy. Best parameters found for each part of the system
are described in the corresponding sections. On the origi-
nal database (SNR=24dB), two-fold cross validation is con-
ducted for GMM and SVM related approaches. When eval-
uated on more noisy databases, GMM and SVM are trained
based on the original database. After evaluation, the best
F-measure with the corresponding precision and recall for
each onset detection method is illustrated in Fig. 6. And
the best accuracy for audio-only and audio-visual transcrip-
tion approaches is shown in Fig. 7.

6.3.1 Performance Comparison of Onset Detection

In the audio-only case, as shown in Fig. 6, the proposed
onset detection approach (MFCC_GMM) achieves 88% and
83% F-measure on databases with SNR=24, 15dB, respec-
tively, which outperforms state-of-the-art methods (Phase,
Pitch, Loudness, and Correlation) by 10% and 9% F-measure.
On databases with SNR=0, -5dB, MFCC_GMM still per-
forms much better than state-of-the-art methods except the
spectrum correlation change based one (Correlation). Phase

change based method (Phase) performs the worst, because
of the vibrato playing style in the database. Therefore, the
MFCC_GMM onset detection approach is superior to state-
of-the-art methods in less noisy environment (e.g., SNR=24,
15dB), and generally good in more noisy environment (e.g.,
SNR=0,-5dB).

In the video-only case, bowing (Bow) and fingering (Fin-
ger) generate 55% and 43% F-measure, respectively. With
linear weighted sum fusion (LW) and SVM based fusion
(SVM), the visual modality (Bow+Finger) generates 57%
and 64% F-measure, respectively. The optimal weights for
bowing and fingering data streams are 0.6 and 0.4, respec-
tively. As the visual modality is not affected by acoustic
noise, their performance is stable for onset detection in dif-
ferent noisy conditions.

In audio-visual fusion (MFCC_GMM+Bow-+Finger), three
fusion techniques (feature concatenation based fusion in fea-
ture level, FC; linear weighted sum fusion and SVM based
fusion in decision level, LW and SVM) generally improve
the onset detection performance. In linear weighted sum
fusion, the optimal weights for audio, bowing and fingering
data streams are found by extensive experiments: 0.7, 0.2,
0.1 for the database with SNR=24dB; 0.7, 0.2, 0.1 for the
database with SNR=15dB; 0.6, 0.3, 0.1 for the database with
SNR=0dB; and 0.5, 0.3, 0.2 for the database with SNR=-
5dB. SVM based decision level fusion is found to be the
most effective fusion approach, as it improves over the best
single modality by 5%, 7%, 16%, and 18% F-measure in re-
spective databases. The more noisy the audio modality is,
the more improvement is accomplished by fusing the visual
modality (shown in Fig. 7). The best F-measure achieved
by fusing audio and visual modalities using SVM are 93%,
90%, 86%, and 81% on databases with SNR=24, 15, 0, and
-5dB, respectively.

As revealed in the experimental results, feature concate-
nation fusion in feature level and linear weighted sum fusion
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Figure 7: Performance improvement by the visual
modality with SVM based decision level fusion in
different noisy conditions.

in decision level are inferior to SVM based decision level fu-
sion for onset detection. This is mainly because bowing and
fingering streams (with 55% and 43% F-measure) are more
noisy than the audio modality in general (with 62% to 88%
F-measure on different noisy conditions).

For the feature concatenation fusion in feature level, the
noise of the visual modality remains in the fused feature
space, thus the feature separability for onset and non-onset
classes does not improve as much as in the SVM based fu-
sion. In addition, the audio feature dimensionality (MFCCs
with 45 dimensions) and visual feature dimensionality (de-
tection functions with 2 dimensions) are out of balance.
Most of the modeling efforts will fall into the audio features
rather than the visual features in the concatenated feature
space. This further affects the improvement brought by the
visual modality in feature concatenation fusion. One way to
balance audio and visual dimensions is to apply additional
dimensionality reduction techniques, such as PCA, on the
audio feature space. However, according to our extra exper-
iments, after reducing the 45 dimensional MFCCs into 3 to
5 dimensions by PCA, the classification performance by the
audio-only modality suffers due to the loss of information.
After fusing the more balanced audio and visual modalities,
the overall onset detection performance is not better than
the the performance by the unbalanced feature concatena-
tion fusion. With this dilemma, the feature concatenation
fusion in feature level is not suitable for our application.

For the linear weighted sum fusion in decision level, the
noise of the visual modality propagates to the fused onset de-
tection function more severely than in the SVM based fusion,
which results in less improvement by the linear weighted
sum fusion. Compared with other fusion methods, the SVM
based fusion in decision level improves the onset detection
performance by the most amount of F-measure. This not
only reveals the advantage of decision level fusion, in which
the audio and visual modalities have the same representa-
tion (detection function for onsets) and balanced dimensions
(1 dimension for each data stream), but also verifies the ef-
fectiveness of SVM’s non-linearity and optimal separating
hyperplane in fusing audio and visual modalities of a violin
playing for onset detection.

6.3.2 Performance Comparison of Transcription

The best transcription accuracy for audio-only and audio-
visual transcription approaches is shown in Fig. 7. In the
audio-only case, with MFCC_GMM onset detection, the over-
all transcription accuracy is 71%, 65%, 42%, and 30% on

the four databases, respectively. In fusing audio and vi-
sual modalities, the best transcription performance are 85%,
79%, 62%, and 50% on the four databases, which improves
over audio-only approaches by 14% to 20% accuracy (shown
in Fig. 7).

As shown in the experimental results, visual modality is
helpful in improving onset detection performance and tran-
scription accuracy. Especially for violin practice at home,
where the acoustic conditions are far from ideal, introduc-
ing visual modality is beneficial to high performance music
transcription system.

7. RELATED WORKS

Few works have been published on music transcription by
fusing multimodal features. Drum transcription in [11] is the
first system we found dealing with percussive sounds using
both audio and visual modalities. Tempo analysis of sitar
performance based on multimodal sensor fusion are found
in [5]. Our previous work in [25] is the first attempt for
violin transcription with audio-visual inputs. However, the
previous system used markers to aid bowing and fingering
analysis, which is less practical compared with the system
in this paper. One attempt to automatic fingering analy-
sis without markers has also been conducted by us in [28].
Nevertheless, the finger tracking algorithm in [28] is more
computationally expensive and less suitable for practical ap-
plications compared with the work in this paper. The corre-
lation between violin music and the visual modality, bowing
and fingering, has been shown in cognitive brain research [2]
and other violin literature [3]. Inspired by those works, we
introduced the visual modality to utilize the complementary
information between the audio and visual modalities in vi-
olin transcription. Audio-visual fusion based approach sig-
nificantly improves violin transcription performance based
on our experimental results. Superior performance has also
been observed by using multiple modalities in audio-visual
speech recognition [20], audio-visual biometric [10], concept
detection in multimedia data [26], etc.

8. CONCLUSIONS

In this paper, we have built an audio-visual fusion based
music transcription system for violin practice in home en-
vironment. To address the difficulties in onset detection
of PNP sounds, such as from the violin, we have proposed
an audio-only onset detection approach based on supervised
learning. Two GMMs are used to classify onset and non-
onset audio frames based on MFCC features. MFCC fea-
ture models the spectrum envelop effectively, which forms
the basis of superior classification performance. In addition,
due to the efficient modeling approach by GMM and the low
dimensionality of MFCCs, the proposed audio-only onset de-
tection method is computationally efficient, thus suitable for
practical applications.

To further enhance audio-only onset detection, the visual
modality of violin playing, including bowing and fingering,
is introduced into our system. T'wo webcams of the system
can be easily placed to capture bowing and fingering videos
in home environment. Fully automatic and real-time algo-
rithms have been devised to conduct bowing and fingering
analysis, which maximizes the practicality of the system.

State-of-the-art multimodal fusion techniques have been
evaluated to fuse the audio and visual modalities for en-



hanced performance of onset detection and overall transcrip-
tion. SVM based decision level fusion is verified to be su-
perior to feature concatenation fusion in feature level and
linear weighted sum fusion in decision level. With the help
of the visual modality and SVM based decision level fusion,
both onset detection and transcription performance are im-
proved significantly. Especially in home environment, where
the acoustic conditions are far from ideal, the performance
improvement by the visual modality is more substantial.

Based on the above contributions and extensive evalu-
ations, the violin transcription system has achieved good
performance even in acoustically inferior conditions. This
transcription system is able to provide more accurate tran-
scribed results as feedback to students when they practice
violin at home. With efficient and automatic audio-visual
analysis algorithms, the system can be easily set up once
and for all in a home environment.
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