Multimedia Systems (2009) 15:113-124
DOI 10.1007/s00530-009-0153-5

REGULAR PAPER

An optimal speed control scheme supported by media servers
for low-power multimedia applications

Wendong Huang - Ye Wang

Received: 1 December 2007 / Accepted: 16 February 2009 / Published online: 12 March 2009

© Springer-Verlag 2009

Abstract In this paper, we present a new concept of
dynamic voltage scaling (DVS) for low-power multimedia
decoding in battery-powered mobile devices. Most existing
DVS techniques are suboptimal in achieving energy effi-
ciency while providing the guaranteed playback quality of
service, which is mainly due to the inherent limitations of cli-
ent-only approaches. To address this problem, in this paper,
we investigate the possibility of media server supported DVS
techniques with smoothing mechanisms. Towards this new
direction, we propose a generic offline bitstream analysis
framework and an optimal speed control algorithm which
achieves the maximal energy savings among all feasible

speed profiles for the given buffers. The proposed scheme
enables us to compute the buffer sizes of feasibility condi-
tion, which are the theoretical lower bound of buffer size
requirement for a given media clip. More importantly, our
scheme facilitates practical applications from four aspects.
First, itdoes not require feedback information on clients’ con-
figuration. This renders our scheme particularly suitable for
broadcast or multicast applications. Second, the speed profile
based on buffer sizes of feasibility condition can provide sat-
isfactory energy efficiency. Third, the required buffer sizes
are so small that they can be met by most mobile devices.
Fourth, additional side information (i.e., speed profile) of
the proposed scheme is negligible compared to the size of
media content. These properties solve the diversity issue and
feasibility issue of media server supported DVS schemes.

Communicated by Ralf Steinmetz.

W. Huang - Y. Wang ()

School of Computing, National University of Singapore,
Computing 1, 13 Computing Drive, Singapore 117417, Singapore
e-mail: wangye @comp.nus.edu.sg

W. Huang
e-mail: huangwd @comp.nus.edu.sg

Experimental results show that, in comparison with the rep-
resentative existing techniques, our scheme improves the
performance of DVS significantly.

Keywords Media server supported DVS - Smoothing -
Offline bitstream analysis - Optimal speed control scheme

1 Introduction

Low energy consumption is always a desired feature for
battery-powered mobile devices such as mobile phones,
PDAs and audio/video players. With the rapid growth of mul-
timedia decoding applications running on these platforms,
energy efficient methods optimized for such applications are
becoming increasingly important.

Dynamic voltage scaling (DVS) is one of the most com-
monly used approaches to reduce the processor energy con-
sumption, which adjusts the clock frequency and/or supply
voltage level at run time while meeting the required qual-
ity of service (QoS). Video decoding applications, a popular
application running on mobile devices, have large variations
in workload, which proved to be a major challenge for DVS.
When applied to video decoding, the performance of a DVS
scheme can be evaluated in terms of its energy efficiency
and associated playback QoS. Different DVS schemes pro-
vide different tradeoffs between these two requirements. In
the class of hard real-time DVS schemes, the QoS is guar-
anteed at the cost of degradation of energy efficiency. This
class of approaches performs the DVS operations using a
global worst case execution time [1], or adaptive worst case
execution times [2,3]. Thus the energy savings achieved by
this class of approaches are limited since the large variations
in workload of video decoding cannot be fully exploited.
This leads to the class of soft real-time DVS schemes. As

@ Springer

114

W. Huang and Y. Wang

video decoding exhibits non-stationary workload character-
istics, the conventional interval-based workload prediction
methods result in unacceptably suboptimal solutions [4,5].
The effectiveness of DVS techniques largely depends on the
capability of predicting the workload of the video decoding.
To address this issue, three subclasses of approaches have
been developed. The first subclass improves the prediction
accuracy by incorporating frame parameters of the video bit-
stream into estimation, such as frame types [6], code sizes [7],
etc, since it is shown that there is a strong correlation between
workload and these parameters. The second subclass meets
a certain percentage of frame deadlines based on the proba-
bility distribution of workload demands [8]. This subclass of
work provides tunable tradeoffs between workload threshold
and QoS. In the third subclass [9], the workload information
is supplied by content providers in conjunction with the video
clips, so workload prediction at the client site is not needed.
Despite a lot of published work, workload prediction remains
to be a challenge.

To alleviate the accuracy issue of the workload predic-
tion, some work explored the possibility of avoiding the
missed deadlines by buffering mechanisms. This concept can
be traced back to [10], where processor speed is dynami-
cally scaled based on the filling level of the input buffer to
avoid its overflow or underflow. In recent years, buffer-based
DVS techniques have been developed to compensate for the
inaccuracy of the workload prediction [11], to average the
workload of multiple frames [12,13], or to reduce the idle
periods of the processor [14]. In general, buffer-based DVS
approaches can achieve significant energy savings. Accord-
ing to our analysis, this is mainly because fluctuations of
video decoding workload are smoothed out by buffers. As
energy consumption of a processor is a convex function of
its speed [15], energy consumption increases with the degree
of fluctuation in the processor speed with the same aver-
age workload. This can be demonstrated by a simple exam-
ple. Consider a decoding task with two frames: for case A,
both frames require the same processor speed of 3, and for
cases B and C, they require processor speeds of 2 and 4, 1
and 5, respectively. Thus cases A, B and C have the same
average workload, but their fluctuation levels increase. We
assume that the energy consumption of the processor is the
square of its speed which is a convex function, we then have
Es=3"432<Eg=2>4+4><Ec=1*+5%

As video decoding exhibits large fluctuations in workload,
smoothing becomes an effective method to reduce energy
consumption. The attractiveness of smoothing stems from
that energy consumption can be substantially reduced with-
out sacrificing the playback quality [12]. For users, it offers
an appealing compromise between prolonging the battery
life and small latency (in our scheme, an averaged latency
of less than 0.1s will be introduced, which is negligible).
Furthermore, our scheme can be implemented on an existing

@ Springer

II. PROBLEM FORMULATION

Input buffer Playback buffer

Display

Decoder _
roas device

Fig. 1 Architecture of the multimedia processing system at the client
site

video decoder since most video decoders have already made
use of input and playback buffers to improve performance
(refer to Fig. 1). These facts suggest that smoothing tech-
niques are promising for energy efficient video decoding on
mobile devices.

The effect of smoothing techniques has received little
attention, and consequently existing buffer-based DVS
techniques yield unsatisfactory performance in terms of
smoothing. In these techniques, buffers provide two conflict-
ing functions: (1) smoothing out fluctuations of the processor
speed to reduce energy consumption; (2) avoiding missing
deadline to guarantee QoS. Consequently, QoS requirements
interfere with smoothing effects and their energy efficiency is
degraded. Taking the algorithm proposed in [11] for example,
the processor speed is scaled according to the filling level of
buffer following control-theoretic principles. To avoid over-
flow and underflow of the buffer, sufficient marginal space of
the buffer needs to be reserved during the speed control pro-
cess. This shows that the buffer space is not fully exploited
to achieve smoothing.

Motivated by this observation, we have the following
important question: is it possible to address energy efficiency
and QoS separately in a DVS scheme, let buffers focus on
energy savings, and exploit an alternative mechanism for
guaranteeing QoS? This question represents a novel insight
into the DVS approach. When having accurate knowledge of
workload and bit length of the decoding units, we can avoid
missing deadlines through bitstream analysis, rather than the
filling level of buffer. This can eliminate unnecessary speed
scaling operations and fluctuations of the processor speed are
further smoothed out.

This strategy, however, cannot be implemented by current
techniques. In most existing DVS approaches, the client is
solely responsible for the DVS operations and these client-
only schemes have their inherent limitations. First, it is hard
to obtain accurate workload information using prediction
techniques in client-only schemes, which is clearly shown in
our brief literature survey. Furthermore, due to the real-time
requirement and limited computing resources, these client-
only approaches can only afford computationally efficient
but suboptimal solutions. On the other hand, these issues can
be solved in the media server. The server can: (1) obtain the
accurate workload estimation by simulation or measurement;

An optimal speed control scheme supported by media servers

115

and (2) employ powerful computation resources to yield the
globally optimal solution via offline video bitstream analy-
sis. In addition, this method shifts the major computations
relevant to energy efficiency from the client to the server.
This simplifies the design of the client speed control scheme
significantly. Based on these observations, in this paper, we
investigate the possibility of a media server supported DVS
which generates the speed profile for a given video bitstream
at the server site offline by incorporating the accurate work-
load estimation and smoothing mechanisms. The resulting
speed profile is then sent to clients together with the video
content. At runtime, instead of performing the conventional
DVS operations, the client reads the associated speed profile
and scales the processor speed accordingly. To the best of
our knowledge, the proposed approach has not been studied
before.

The proposed scheme has a wide range of applications
with pre-recorded media contents such as video on demand or
simply download and playback media content. For practical
applications, two critical issues need to be addressed. The
first is the diversity issue where the clients are equipped with
different processors or memory sizes. It gives rise to vari-
ous video decoding workload and available buffer sizes for
DVS. In comparison with buffer sizes, workload is less crit-
ical since: (1) for some video formats, such as MPEG-1 and
MPEG-2, decoding workload on different processors can be
translated by simple scaling computation [9]; (2) the different
types of processors for mobile devices are very limited, for
those formats where the scaling method cannot yield accu-
rate estimation, we can generate a speed profile for each type
of processors, based on the workload measurement on the
target processor, and put all of these speed profiles into the
side information. Since the size of a single speed profile is so
small (details found in Table 4), the overhead associated with
the total speed profiles are negligible. To address the prob-
lem of the different buffer sizes adopted by various clients,
a possible solution is to generate different speed profiles for
different groups of memory sizes. However, this is unneces-
sary in the case of our scheme. The second issue is the over-
head associated with the speed profile. Since we will insert
the speed profile as side information into the bitstream, it is
desirable to make the size of the additional side information
as small as possible. In the following we will show that our
scheme has solved the above issues satisfactorily.

Besides the concept of media server supported DVS, the
other contributions of this paper are as follows.

First, we have developed a bitstream analysis framework
to address the inherent fluctuation of the decoding workload
of a given media bitstream by manipulating the sizes and
decoding workload of its media units, input and playback
buffers of media decoders. As a generic framework, it can
be used to solve various problems and provides analytical
results.

Second, based on the preceding framework, we have pro-
posed an algorithm to compute the optimal speed profile
which achieves the minimal energy consumption among all
feasible speed profiles with guaranteed QoS.

Third, in our scheme the buffer size requirement is deter-
mined by the characteristics of the given video clip through
bitstream analysis. This scheme enables us to compute the
buffer sizes of feasibility condition, which are the theoretical
lower bound of the buffer size requirement to guarantee the
playback QoS. Our scheme has following important proper-
ties:

e It does not require feedback information about the actu-
ally equipped buffers from clients. This will benefit the
practical applications by simplifying the design of the
whole system significantly.

e The energy consumption converges rapidly with increas-
ing buffer size. As shown in Sect. 4.2, we achieve less than
2% (Table 3) additional energy reduction as we increase
the buffer sizes from feasibility condition by 33-50%.
This implies that we can compute a single speed profile
based on the buffer sizes of the feasibility condition which
yields satisfactory performance of energy efficiency.

e For a given bitstream, the buffer sizes of feasibility condi-
tion are so small (on average, 14.40 K bytes of input buffer
and 453.48 K bytes of playback buffer, details found in
Table 1) that they can be met by most mobile devices. This
property satisfactorily solves the diversity issue of mobile
devices. Meanwhile, the reduction of buffer requirements
provides additional opportunities for energy savings.
Through a memory controlling mechanism [16], the
unused memory can be shut down or switched to an idle
state to save energy. In such cases, the energy reduction
is closely related to the reduction of buffer requirement.
As memory operations are responsible for a significant
portion of the overall energy consumption, the reduction
of buffer requirements has an important contribution to
the overall energy efficiency.

e The overhead of the speed profile is negligible compared
to the video content size (details found in Table 4). Our
scheme will keep the processor speed as a constant (details
can be found in Sect. 3.3) until the speed must be changed
due to the constraints of the buffers. Consequently, scal-
ing operations of the processor speed are reduced sig-
nificantly. This property allows us to update the speed
only when it is changed, which is superior to the periodic
sampling method of profile information used in existing
schemes [9].

The paper is organized as follows. Section 2 formulates the
problem. In Sect. 3, we present our solutions in three parts.
In Sect. 4, we evaluate the proposed scheme. We conclude

@ Springer

116

W. Huang and Y. Wang

Table 1 Configurations of decoding the six video clips

Clip name Akiyo Coastguard Container Hall Highway Walk
FI (Macroblock) 670 1,320 866 881 1,249 1,367
FP (Macroblock) 1,052 1,028 1,035 1,029 1,062 1,401
IB (KB) 12.87 15.97 12.76 12.54 15.37 16.90
PB (KB) 403.9 506.9 397.4 395.1 479.6 538.0
Delay (s) 0.088 0.11 0.075 0.076 0.10 0.12

FI and FP Feasibility condition for input buffer and playback buffer respectively, both of them measured in Macroblocks, the value in bold is used
for both input buffer and playback buffer to estimate the other items, /B and PB input buffer size and playback buffer size, measured in Kbytes,
both of them derived from the max(FLFP), Delay introduced delay by buffering in s

the paper in Sect. 5. In Sect. 6, we prove the optimality of
our speed profile algorithm.

2 Problem formulation

In this paper, we consider the following multimedia pro-
cessing system architecture as shown in Fig. 1. The tar-
geted client consists of: (1) an input buffer which is used
to store the incoming compressed media stream before being
processed; (2) a playback buffer which accommodates the
decoded media data for display devices. Both the input and
playback buffers have fixed capacities and work in a First
In, First Out (FIFO) manner. For the sake of generality, we
model the power—speed relationship of the processor as a
convex function. The system-level view of the media bit-
stream throughout this paper is as follows: it is made up of
a sequence of media objects. A media object can be a frame
or a Macroblock. Before compression, all these objects have
an identical bit length. However, the bit lengths of the media
objects can be changed during the encoding process. Fur-
thermore, the workload for decoding these media objects is
also different. This model represents most video bitstreams
generated by current compression techniques, such as MPEG
video.

For a given media bitstream over period [0, T], our pro-
posed method will produce a speed profile 7 = {(w1, t1),
ooy (wp,)}, with tg = 0, t, = T , which means the
processor speed is set to w; over time interval [#;_1, #;], for
1<i<n.

We assume that the incoming bitstream arrives at the input
buffer at a constant rate of r bits/s and the playback device
reads media objects from the playback buffer at a rate of C
objs/s. Let the function «(k) denote the sum of bit length
from the media objects 1 to k. Similarly, the function F (k)
denotes the sum of cycle numbers required to decode the
media objects 1 to k. These two functions can be obtained by
analyzing the given media bitstream.

The problem can be formally stated as follows. We assume
that the first bit of the bitstream arrives at the input buffer at
the instant of + = 0. Let y™ (¢) denote the number of pro-

@ Springer

cessed media objects under the speed profile 7 during the
time interval [0, #]. Given the input and playback buffer size
b and B, respectively, cumulative cycle requirement F(k),
cumulative bit length «(k), and the bit length of a decoded
media object U, what is the speed profile = achieving max-
imal energy savings while satisfying that: (1) the playback
buffer never underflows and overflows; (2) the input buffer
never underflows and overflows? This can be formulated as:
Il
Min >~ P(a;) - (t; — ti-1),
i=1
where P (-)is the convex function on

power—speed relationship 2.1
S.t.
O<r-t—a(" () <b, Vt>0 (2.2)
and0 < (y" (1) —C-(t—12))-U <B, Vt>0,
where t; : playback delay 2.3)

3 Energy optimization technique

Our solution to the problem (2.1) consists of three parts. The
first part (Sect. 3.1) establishes the relationships between the
constraints of buffers and the bounds of the processor speed.
These relationships form the basis of the remaining two parts.
The second part (Sect. 3.2) identifies the appropriate buffer
sizes and playback delay parameters for a given video bit-
stream. These parameters will determine the existence of
a feasible speed profile and the energy efficiency perfor-
mance of the proposed scheme. Finally, given those param-
eters obtained by the second part, the third part (Sect. 3.3)
computes the optimal speed profile.

3.1 Bounds on the processor speed

Given the cumulative bit length function « (k) and cumula-
tive cycle requirement function F'(k), the buffer sizes b and
B, we can compute the upper bound and lower bound of the
processor speed as follows.

An optimal speed control scheme supported by media servers

117

From (2.2) we have

ret—b<a(y" () <r-t 3.1)

For the function «(k), we compute its inverse function
a~!(n), which returns an integer k. The sequence media
frames of [1, k] have the bit length n. Since «a(k) refers
to a cumulative process, both «(k) and o~ (n) are mono-
tonic increasing functions. By operating the inverse function
Ol_l(-) on (3.1), we have:

o 'ror=b) <y @) <a (-1 (3.2)

Moreover, we have the following relationship by performing
the cumulative cycle requirement function F'(-) on (3.2):

F (a—l(r r— b)) <FG™ (1) < F (a_l(r : z)) (3.3)

F(y™ (1)) is the exact cumulative frequency requirement
function of the desired speed profile. Therefore (3.3) forms
the upper and lower bounds on the processor speed under the
constraint of the input buffer.

Similarly, we can derive the upper bound and lower bound
of the processor speed under the constraint of the playback
buffer according to (3.4):

F(C-(t—12) <F(y (1) <F(C-(t+T,—1a)),

B
where Tp = ——
c-U

We then combine (3.3) and (3.4) and form the global upper
bound and lower bound of the processor speed:

(3.4)

max (F (oz_l(r - b)), F(C-(t— r,z))) < F(G™ (1)

< min (F (a*‘ (r - t)), F(C-(t+T,— td))) 3.5)

3.2 Estimation of the input buffer and the playback buffer

The smoothing effect is closely related to the buffer size:
larger buffer yields better smoothing performance. However,
due to the shared computational resources and a significant
source of energy consumption, it is desirable to reduce the
allocated buffer to the application. Therefore, the estimation
of the input buffer and the playback buffer becomes an impor-
tant problem. We need to compute the appropriate buffer sizes
in order to make the energy consumption resulted from the
fluctuations below certain threshold.

Our bitstream analysis framework provides an insight into
the buffering mechanism. For the sake of clarity, we denote
the area enclosed by (3.3) as S;,, the area by (3.4) as S,
and the area by (3.5) as Sgp. In other words, S;,(Sp) rep-
resents the range of processor speeds that will not lead to
underflow or overflow of the input buffer (playback buffer).
Sep is the range of processor speeds which is allowed by
both the input buffer and playback buffer. As shown in (3.3),

Sin has one tunable parameter: input buffer size b, where
larger input buffer can increase the area of §;,. From (3.4),
Sp1 is controlled by two parameters: the playback buffer size
B which controls its area, and the playback delay 7; that
controls its position. According to (3.5), Sgp can be geomet-
rically interpreted as the intersection of S;, and S;. Larger
S¢p 1s desired, since more space is allowed for the smooth-
ing operation. According to the above analysis, we can shape
S,p by tuning the three parameters b, B and t4. The effects of
b and B are straightforward. On the other hand, the relative
position between S;, and S plays an important role in shap-
ing S,p: when the upper bound of playback buffer aligns with
the upper bound of input buffer, S, yields the maximal space
for the smoothing algorithm with minimal playback delay.

Our estimation algorithm consists of two parts. The first
part computes the buffer sizes based on the feasibility con-
ditions, which refer to the minimal buffer requirements to
guarantee the existence of a feasible speed profile. This is
the basic requirement for a media decoding process. When
the buffer sizes of feasibility conditions cannot provide a
satisfactory smoothing effect, we need to invoke the second
part. The principle of the second part is straightforward. It
increases the buffer sizes in fine steps, and then computes
the speed profile using the optimal speed profile algorithm
(details can be found in Sect. 3.3) for the given buffers. From
the speed profile, we can compute the energy consumption
level resulted from the fluctuations. This process repeats until
the energy consumption resulting from the fluctuations is
below some threshold. Though the second part will incur
intensive computations as it employs an exploration strat-
egy, the experimental results in Sect. 4.2 show that this part
is usually unnecessary since the buffer sizes of feasibility
conditions are sufficient for the applications. We believe that
this stems from the large fluctuation levels of sizes and work-
load among the video bitstream: the buffer sizes, which just
satisfy the feasibility conditions of the worst case, can work
satisfactorily for the entire bitstream.

3.2.1 Feasibility conditions

To guarantee that the global bounds in (3.5) have feasible
speed profiles, B and b should satisfy certain conditions. We
call these feasibility conditions. They are subject to the fol-
lowing two constraints: the lower bound of the input buffer
should be less than the upper bound of the playback buffer
(3.6), and the lower bound of playback buffer should be less
than the upper bound of input buffer (3.7).

Fla™'¢o1=b) < F (")
<F(C-(t+Ty,—1ta)
F(C-t=t) = F (") < F (a”'¢r-1))

(3.6)
3.7

@ Springer

118

W. Huang and Y. Wang

From (3.6) and (3.7), we can derive feasibility conditions
for B and b. Let A = T}, —t4, which indicates the position of
the upper bound of playback buffer, and A(denote the desir-
able value that the upper bound of playback buffer aligns
with the upper bound of input buffer.

One possible way to calculate Ay is as (3.8):

Ao :argAminZ‘F(C(t—i-A)) - F(Ol_l(”'l))’

>0
3.8)
From (3.6) and (3.7) we have:
b>r-t—a(C-(+ Aoy)), > (3.9)
B>C-U-(t+A)—al(r-0-U t>0 '

To fully utilize the buffers, we can use the larger one of
these two feasibility sizes for both the input and playback buf-
fers. This equals to shifting the lower bound of the smaller
buffer towards right side to align with the lower bound of the
larger buffer. Towards this, we need to convert b and B into
the numbers of media objects b and B respectively, as shown
in (3.10). It is noted that we cannot directly manipulate the
bit length results from (3.9), since they are associated with
the compressed data and the decompressed data, respectively.
After aligning the lower bounds of input buffer and playback
buffer, we can compute their modified bit length 4’ and B’ in
(3.10).

b=a"Yb),
B=B/U,

b = a(max(b, B))
B’ = max(b, B) - U (3.10)
Finally we can calculate the modified playback delay as:

t = TIQ — Ay, where Ag is given by (3.8) and

T = B
poCc-u

(3.11)

3.3 The optimal speed profile algorithm

Given the global bounds of the processor speed obtained from
Sect. 3.2, we have developed the optimal speed profile (OSP)
algorithm.

To reduce the fluctuation level of the generated speed pro-
file, the key idea behind the proposed algorithm is to make
the speed profile close to the mean value of the processing
workload. This principle has two implications. First, when
the average workload is feasible for a given segment, we use
it as the speed profile of the segment since its fluctuation
level is minimal. Second, when the processor speed must
be changed to ensure feasibility, we change the processor
speed based on the largest deviation points from the average
workload, since it is the closest feasible speed profile to the
average speed.

We illustrate the critical part of the proposed algorithm in
Fig. 2: given the global bounds, our algorithm is required to

@ Springer

1t Cumulative workload
A
Global upper bound
1B
P Global lower bound
C..[~
o Time

Fig. 2 Tllustration of the optimal speed profile algorithm

find a smoothing speed profile over period [O, A]. We first
construct a straight line OA since it achieves maximal energy
saving. However, this is infeasible as OA violates the global
bounds near points B and C. Among those violated bounds,
we identify point B having the largest deviation from line
OA. Then the speed profile is split into two parts, line OB
and line BA, to satisfy the speed bounds at B. The new speed
profile may violate global bounds as well, such as point C in
Fig. 2. We then perform the same splitting process resulting
in line OC and CB. The process continues iteratively until all
violations are eliminated.

We give the detailed description of the proposed algorithm
in Fig. 3.

Concerning the performance of the optimal speed profile
algorithm, we have the following theorem.

Theorem 3.1 Given the same configurations of the algo-
rithm, the speed profile generated by the optimal speed profile
algorithm achieves the minimal energy consumption among
all feasible speed profiles.

Proof See Sect. 6. O

4 Experimental results

In this section, we present two kinds of experimental results
concerning the proposed scheme. The first is the comparison
with the representative buffer-based DVS schemes, which is
used to evaluate the effectiveness of the proposed scheme.
The second includes: (1) the comparison with the theoreti-
cal minimal energy consumption of the given bitstream; and
(2) the overhead of the speed profile, both of which provide
insights into the properties of our scheme.

We carried out experiments on six video clips selected
from the MPEG test dataset: Akiyo, Highway, Coastguard,
Container, Hall and Walk. All of them have an identical reso-
lution of 352 x 288 and frame rate of 30 fps. They are encoded
in MPEG-2 format. We employed The Core Pocket Media
Player (TCPMP) [17] as the decoder application, since it is
an open-source media player optimized for mobile devices.

An optimal speed control scheme supported by media servers

119

The Obtimal Speed Profile Aleorithm

INPUT: B
B,
OUTPUT: Q: set of speed profile triple: <ts,t€,a)> processor
speed @ over period [z,]
FUNCTIONS:

RecursiveSmoothing (tx ,Wt,, we) : to find a smoothing speed

(+) : global upper bound of the speed
(-): global lower bound of the speed

profile from time ¢, with accomplished workload w
to time ¢, with workload w,
max, (s) : the maximal workload in sequence s
max, (s): time index of the maximal workload in s
BEGIN
Q) = RecursiveSmoothing (tiﬂ, Omax (B,;). man(Bmin))
Q « Q+(0.,2,.,0)
END

in?

FUNCTION RecursiveSmoothing(7 ,w_,f,,w,)
., <9, <9, tet,
WHILE 7 <t,
dy < B ()= (t—1)(w,—w)/t,—1)+W,)
iy = B ()= ((=1,) (W, =w) [(t, = 1) + w,)
IFd <0

max

e € Do U ([)
ELSEIF d_, >0
Fmin &~ Fmin U (t’ dmin)
ENDIF
tt+1
ENDWHILE
IFI =0 ANDT, =0

Q (1,1, (w,—w,)/(t,—1,))
ELSE
IF max, (T,)>max, (T,)
t,=max, (T), w,=B,1(,)
ELSE
t,=max, (T,), w, =B, ()
ENDIF
QI =RecursiveSmoothing (ts SWLE W,)
Q, =RecursiveSmoothing (7,,, w,,,7,, W,)
Qe—Q+Q,
ENDIF
RETURN Q

Fig. 3 The optimal speed profile algorithm

We measured power consumption of the video decoding
application using a development board of “RainboW” [18],
which is designed to meet a wide spectrum of mobile appli-
cations. It consists of the Intel PXA 270 that is based on
an enhanced version of the Intel XScale, 64 MB SDRAM,
64 MB Flash, 3.5in. QVGA with Touch Panel, QWERTY

keyboard, USB ports, wireless connectivity, and audio video
components, etc. This system runs Linux 2.6 ported for ARM.
The development board has been customized with jumper
wires to allow current and voltage measurements for main
components of the system. We used National Instruments
PXI-4071 7%-digit digital multimeters to measure our tar-
get components. These multimeters were then connected to
a desktop computer to record the collected data. We focused
on power supply of the processor since it is targeted by DVS
techniques.

To obtain an accurate estimation on required buffer sizes
for the bitstream analysis, it was necessary to perform the
algorithm using a fine granularity. Because of this, we chose
Macroblock as the basic media object in line with [19]. We
obtained the computational workload of each Macroblock
using a simulation method which is based on ARM architec-
ture [20].

We implemented our scheme with the buffer sizes of fea-
sibility condition. Towards this, we computed the speed pro-
file as follows. Given the workload and bit length trace of a
video clip, we first computed the feasible sizes of the input
and playback buffers according to (3.9). We then performed
(3.10) to fully utilize the buffers and computed the playback
delay according to (3.11). Finally we computed the speed
profile using OSP algorithm with those obtained parameters.
The resultant configurations for the six video clips are listed
in Table 1. We made use of these configurations to conduct
the experiments in Sects. 4.1 and 4.2.

4.1 Comparisons with existing buffer-based speed control
schemes

Since energy efficiency and buffer requirement well char-
acterize a buffer-based DVS scheme when it provides guar-
anteed QoS for video decoding, we compared our scheme
with two representative existing buffer-based DVS schemes
to investigate: (1) energy consumption at the same buffer
level, and (2) the maximal buffer occupancy at the same
energy consumption level. We used dithering to convert the
required continuous voltage levels to discrete levels provided
by PXA 270, which is widely employed in such case [21].
The baseline 1 is based on [14], which employs buffers to
reduce the idle processor periods resulting from the large var-
iation of video decoding time. For fairness, we set the output
buffer size of baseline 1 as the sum of the input and play-
back buffer sizes of our scheme and execute both algorithms
at the Macroblock level. We showed the energy consump-
tion ratios between our scheme and the baseline 1 in Fig. 4.
Compared to the baseline 1, our scheme can achieve 22.8%
energy savings on average with the same buffer sizes.

The baseline 2 is based on feedback control with PI con-
troller [11], which scales the processor speed by monitoring
the filling level of the playback buffer. To keep its energy con-

@ Springer

120 W. Huang and Y. Wang
_§ O Baseline1 @ Our scheme 4.2 A Comparison with the theoretical minimal energy

g ;-g T] consumption and the overhead of speed profiles

2 s

E 06 | Due to the limited sizes of buffers, the proposed scheme leads
2 05 to more energy consumption than that of the theoretical min-
c 04 -1

8 03 imal energy consumption (TMEC), which is the energy con-
S g‘f T sumption corresponding to the global average speed, and is
£ 00 computed as T - P(®), where & = + Do @(0),
2 P N & 00@&‘ o \«\\9‘\@ Rt {w(@)|0 <t < T} is the required speed for each media

2 ¢

Fig. 4 Normalized energy consumption between our scheme and the
baseline 1 for the six test video clips

sumption close to the optimal energy consumption at Macro-
block level, we scaled the controller parameters from frame
level by the number of Macroblocks in a frame, namely,
the proportional factor and integral factor (0.01 and 0.0145,
respectively, according to the author’s suggestion) were
scaled down by 396 (namely, the number of Macroblocks
contained in a frame), dead-zone, forward window and feed-
back window were scaled up by 396. The energy consump-
tion ratio and the required buffer sizes are listed in Table 2.
From Table 2, we can see that at the similar energy consump-
tion level, our method can achieve 51.2% reduction in buffer
requirement on average.

Baselines 1 and 2 represent the recent advances in buffer
based DVS techniques. The above experimental results show
that the proposed scheme significantly outperforms existing
DVS schemes. The improvements achieved by the proposed
scheme can be interpreted in two alternative ways. First, due
to the elimination of QoS interference, the energy efficiency
of smoothing mechanism has been increased by 22.8%. Sec-
ondly, with accurate workload estimation, only a half size of
the buffer is needed to provide the guaranteed QoS. These
demonstrate the superiority of the proposed media server
supported DVS scheme and show its high potentials for low-
power video decoding applications.

Table 2 Comparisons between our scheme and the baseline 2

object. Intuitively, we can increase the buffer sizes to further
reduce the energy consumption. It is then important to inves-
tigate the following questions: (1) how much further energy
savings can be achieved with the increased buffer sizes? (2)
what is the relationship between the increase in buffer size
and the improvement of energy efficiency? (3) what are the
appropriate buffer sizes for a given media clip?

To answer these questions, for each test video clip we
first compared the energy consumption of TMEC with our
scheme using the minimal requirement of the input and play-
back buffers. The results are summarized in Table 3. Then
we increased the buffer sizes and computed their correspond-
ing energy consumptions, as illustrated in Fig. 5, to show
the relationship between the increase in buffer size and the
improvement of energy efficiency.

These results have two important implications. Using the
configurations in Table 1, namely, 14.40K bytes of the input
buffer, 453.48 K bytes of the playback buffer on average, the
energy consumption of the proposed scheme is very close
to the theoretical lower bound with only 1.2-2.2% addi-
tional overhead. The results suggest that the proposed scheme
works well with sufficiently small-sized buffers. This also
implies that increasing the buffer sizes or prolonging the
latency will hardly reduce the energy consumption further.
This is supported by the results shown in Fig. 5, where we
only achieved less than 2% additional energy reduction while
increasing the buffer sizes by 33—50%. These facts show that
the buffer sizes of feasibility conditions are appropriate for
the video decoding applications.

Clip name Akiyo Coastguard Container Hall Highway Walk
NEC 1.04 1.06 1.01 1.02 1.03 1.03

BUF 1,999 2,436 2,021 2,047 2,171 3,565
RED 0.474 0.578 0.488 0.497 0.425 0.607

NEC Normalized energy consumption of the baseline 2 over our scheme, BUF maximal buffer occupancy of the baseline 2 in terms of Macroblocks,
RED reduced buffer size ratio achieved by our scheme (refer to Table 1)

Table 3 Energy consumption ratio between the proposed scheme and the TMEC

Clip name Akiyo Coastguard Container Hall Highway Walk

TMEC 1.012 1.022 1.016 1.016 1.012 1.018

@ Springer

An optimal speed control scheme supported by media servers

121

—
—=— Coastguard

0.988 1| —— Container [T TTf-TTooitcoooomooooobooooT
— Hall

Highway
—o— Walk

Normalized energy consumption

50 100 150 200 250 300 350 400 450 500
Increased buffer sizes (Macroblock)

Fig. 5 Normalized energy consumption with the buffer sizes increased
from the feasibility condition for the six video clips

Another important property of our scheme is the size of
the corresponding speed profile, which is determined by the
required number of scaling operations. In our scheme, the
processor speed is kept as a constant until the speed has to
be changed due to the constraints of the buffers. This allows
us to add a new item to the side information only when the
processor speed is changed. The numbers of scaling opera-
tions of the six video clips at Macroblock level are listed in
Table 4.

As shown in Table 4, the numbers of scaling operations
range from 14 to 55. For each scaling operation, the speed
profile is added as an item with two parts: the Macroblock
index where the processor speed needs to be scaled, and the
new speed level. We estimate the speed profile size as fol-
lows. Assuming that 28 bits are used to represent the index
of the Macroblocks, which is sufficient for 110min video
clips with frame rate of 30fps and resolution of 720 x 480
(DVD standard), and 6bits are used to identify the speed
levels (namely, 64 speed levels), the corresponding speed
profile sizes are listed in the third row of Table 4. Com-
pared to the content sizes (the fourth row of Table 4), the
overhead associated with side information is completely
negligible.

5 Conclusion and future work

We have proposed a new concept of media server supported
DVS, which is superior to existing client-only approaches.
The key ideas include supporting energy efficiency by
smoothing mechanism and guaranteeing playback QoS by
bitstream analysis. As a first step to this new direction, we

have proposed an optimal speed control scheme for intra-task
voltage scheduling, in line with [3], which adopts single-task
mode and is suitable for dedicated mobile devices. The sig-
nificance of our scheme is twofold. First, it lays a solid theo-
retical foundation for this direction of research. It can serve as
a generic model which is possible to be extended to solve var-
ious problems. Second, it improves the performance of DVS
in terms of energy efficiency or memory requirements sig-
nificantly. More importantly, our scheme facilitates practical
applications from four aspects: (1) it does not require feed-
back information from the clients; (2) a single speed profile
can yield satisfactory performance of energy efficiency; (3)
the required buffer sizes can be met by most mobile devices;
and (4) the sizes of resultant speed profiles are negligible
compared to the media content. These properties render our
scheme suitable for a wide range of applications from down-
load-playback and video on demand, to broadcast and mul-
ticast.

For the future work, the proposed scheme can be extended
to multiple task scenarios. Moreover, our analysis framework
provides more accurate estimation of input and playback
buffer configurations in terms of individual media bitstreams.
The new estimation can be used to identify the build-in buffer
ranges to support a class of multimedia processing applica-
tions, which is an important issue in designing a SoC platform
[19].

6 Proof of optimality

Lemma 1 Fora convex function P(), ifb > a, then we have
P(b+c)-P(b)>P(a+c)-P(a), for c > 0

Consider a period [Ty, T,] in the decoding of a media bit-
stream, we define the instant 75 and 7, as the beginning point
and the end point of the period, and the sum of workload
between T and T, as the cumulative workload.

Lemma 2 For a given media bitstream, two speed profiles,
with the same cumulative workload between the beginning
point and the end point of a period, will have the same aver-
age speed during this period.

Lemma 3 For a certain cumulative workload of a period
[Ty, T,], the average speed over [T, T, incurs the minimal
energy consumption.

Table 4 The number of scaling operations, corresponding speed profile sizes, and content sizes for the six video clips

Clip name Akiyo Coastguard Container Hall Highway Walk
Scaling number 21 14 22 35 55 34
Speed profile (byte) 90 60 94 149 234 145
Content (Mbyte) 1.33 1.33 1.33 1.33 9.03 1.59

@ Springer

122

W. Huang and Y. Wang

For Lemma 1, according to the definition of convex
function, we have:

P(b+c)— Pla)

P() < (b—a)+ P(a)
b+c—a
(b—a)-P(b+c)+cP(a)
- b+c—a
P(b+c)— P(a)
P(a+c) < HT-c—l-P(a)
cP(b+c)+ (b —a)- P(a)
- b+c—a

By adding the above two inequations, we have:
Pb)+ Pa+c) <Pb+c)+ P(a)

Then we have

P(b+c)—Pb)> Pla+c)— P(a).

Since Lemma 2 and 3 are quite straightforward, we skip their
proofs.

We define change points as those instants when the speed
of the processor is changed. For example, points A, B
and C are all change points in Fig. 2. Considering
S* = {w*(j)|1 < j < N}, which is the speed profile gen-
erated by the optimal speed profile (OSP) algorithm, all the
change points of S* can be divided into two classes: (1) min-
change points: the changes of processor speeds are due to
global lower bound; and (2) max-change points: the changes
of processor speeds are due to global upper bound.

Then, we can derive that for any feasible speed scheme at
a change point of S*, it must be not lower than min-change
points and not higher than max-change points. We can see
that the beginning point of the speed scheme is a max-change
point and the end point of the speed scheme is a min-change
point. Considering a feasible speed profile, its cumulative
workload will only intersect that of S* at the following points:
beginning point, end point, some points between neighboring
pair of min-change points and max-change points. We call
these intersection points. The intersection points divide the

can conclude that our scheme is optimal for the full range
of speed profiles. We first consider a segment which con-
tains the min-change points. We construct a speed profile
S={w(n)|l <n < N}, subject to: (1) its cumulative work-
load intersects that of S* at the beginning and end points of
the segment; (2) it only changes speeds at the change points
of S*; (3) within the segment, the cumulative workload of S
is not less than that of S*. It should be noted that S is not
necessarily a feasible speed profile.

In a segment which contains min-change points, S* has
an important property: its speeds are mono-decreasing. We
show this property as follows. According to OSP algorithm,
the S* is generated based on the deviation from the average
value of the speed of some region. As illustrated in Fig. 6a,
let point A have the largest deviation from the average value
of the segment, point B have largest deviation from the aver-
age value of region [0, A], and points C, D have the largest
deviation from the average value of region [O, B]and [B, A],
respectively. In our algorithm, we first split the region [O, A]
into [0, B] and [B, A], then split [O, B] and [B, A]. After
that, we have obtained the resultant speed profile, as shown
in solid line in Fig. 6a. We denote the cumulative workload
of B, C,and D as x, y, z, temporal offsets from point O for
B, C,and D asc, b, d, and the average speed over [O, A] as
r. Since B has the largest deviation from the average speed,
wehavex —r-b>y—r-c,andx —r-b > z—r-d. Then
we have 3= > r > Z=5 It is noted that (x — y)/(b — ¢)
is the speed over [C, B] and (z — x)/(d — b) is the speed
over [B, D]. This relationship holds for each splitting oper-
ation performed in the algorithm. This proves the property:
for a segment which contains min-change points, the speeds
of S* are mono-decreasing. Similarly, we can prove that for
a segment which contains max-change points, the speeds of
S* are mono-increasing.

Based on the construction rules, the cumulative workload
of S is not less than that of S*, as shown in Fig. 6b:

Wehave D o (j) -7 () = D o (j)- T (),

whole speed scheme into various segments. Each segment j=1 Jj=1
only contains homogeneous change points. I<n<N 6.1
Next we will show that in each segment, our scheme is
the optimal one among all feasible speed schemes. Then, we For region 7(j), we denote Aw(j) = w(j) — o*(j).
Fig. 6 a Illustration of the (a) (b)
splitting operation; b Illustration
of the speed profiles, thin lines I Cumulative workload 1 Processor speed
stand for speed profile S*, rhick z D A
lines stand for speed profile S B___—""_ e
X
c o - -
y . ’_,-'/,// [
[b d —_—
O ¢ Time O Time

@ Springer

An optimal speed control scheme supported by media servers

123

From (6.1), we have

n
D Ao()T()z0, 1<ns=N
j=1

(6.2)

Aot () = () -0t (),
We divide
Aw™ (j) = o™ (j) —w(j),

w () > ™ (j)

o (j) <" (j)
(6.3)

GT(i)={klk<i, wk) >o" (k)

We denote (6.4)
G (i) =f{klk<i, wk) <o*(k)}

There must exist an partition R,

[ri@ct@, rjONr@ =9, ieGt(,]
R={rj (i)
’ j#k, andj, ke G~ (N), andj, k¢ G~ (i)
For any j € G™ (j), we have:
Jj—1
Ao~ () T(j) = D A’ (@) () (6.5)

i=1

Next we prove (6.5) by contradiction. We suppose that some
Aw~ (k) cannot be covered. Then for k, we have
>k_ Aw(j) - 7 (j) <0, this contradicts with (6.2).

As the power is a convex function of the speed of the
processor, substitute Lemma 1 into (6.5), we have:

> P@) - P (") 10)
ieG* (i)

> Z P (0" () = P(@()) -7 ()

jeG=())

(6.6)

This shows that the constructed speed profile S will have
larger energy consumption than the speed profile S* for the
given segment.

Now we consider the segment which only contains max-
change points. We construct a speed profile S, which is sub-
jectto: (1) its cumulative workload intersects that of S* at the
beginning and end points of the segment; (2) it only changes
speeds at the change points of S*; (3) within the segment, the
cumulative workload of S is not greater than that of S*. Thus
we have:

Dot =D () T(). 1snsN (67

J=1 j=1

On the other hand, from Lemma 2, we have:

n N
Do T+ D, ol) ()
j=1 j=n+1
n N
=D 0" t+ D, &G T() (6.8)
j=1 j=n+1

We consider the situation from the end of the segment.

n

Do)tz D e ()T() 1snsN (69

j=N j=N

As shown above, the speeds are mono-increasing for such
segment. Thus we have the same result for segment which
only contains the max-change points.

Finally, we consider a feasible speed profile S’. A feasi-
ble speed profile must be not less than a min-change point
and not greater than a mix-change point and intersects the
cumulative workload of S* at intersection points. But S’ can
use arbitrary feasible curves to connect these points. Corre-
sponding to S’, we can construct a speed profile S with the
same cumulative workload at the change points and the inter-
section points, using straight lines to connect those points.
According to Lemma 3, the energy consumption of S’ is not
less than that of S. And we have shown that the energy con-
sumption of S* is not greater than that of S. Therefore, we
can conclude that the energy consumption of S* is not greater
than that of any feasible speed profile.

Acknowledgments We thank Dr. Samarjit Chakraborty for his help in
power consumption measurements, and Mr. Vu An Tran for assistance
in running some experiments. We also wish to thank the anonymous
reviewers for their critical comments, which have helped to improve
the quality of this paper. The work carried out was funded by the
Singaporean Ministry of Education under the research grant R-252-
000-236-112.

References

1. Yao, F,, Demers, A., Shenker, S.: A scheduling model for reduced
CPU energy. IEEE Annual Foundations of Computer Science.
pp. 374-382 (1995)

2. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynami-
cally variable voltage processors. In: International Symposium on
Low Power Electronics and Design, pp. 197-202 (1999)

3. Shin, D., Kim, J., Lee, S.: Intra-task voltage scheduling for low-
energy hard real-time applications. IEEE Des. Test. Comput. 18(2),
20-30 (2001). doi:10.1109/54.914596

4. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for
reduced CPU energy. Oper. Syst. Des. Implement. 13-23 (1994)

5. Pering, T., Burd, T., Broderson, R.: The simulation and evaluation
of dynamic voltage scaling algorithms. In: International Sympo-
sium on Low Power Electronics and Design, pp. 76—81 (1998)

6. Choi, K., Dantu, K., Cheng, W., Pedram, M.: Frame-based dynamic
voltage and frequency scaling for a MPEG decoder. In: Interna-
tional Conference on Computer Aided Design, pp. 732-737 (2002)

7. Bavier, A., Montz, A., Peterson, L.: Predicting MPEG execution
times. In: SIGMETRICS/PERFORMANCE International Confer-
ence on Measurement and Modeling of Computer Systems, pp.
131-140 (1998)

8. Yuan, W., Nahrstedt, K.: Energy-efficient soft real-time CPU sched-
uling for mobile multimedia systems. In: ACM Symposium on
Operating Systems Principles, pp. 149-163 (2003)

9. Chung, E., Benini, L., Micheli, G.: Contents provider-assisted
dynamic voltage scaling for low energy multimedia applications.
ISLPED, pp. 42-47 (2002)

@ Springer

http://dx.doi.org/10.1109/54.914596

124 W. Huang and Y. Wang
10. Nielsen, L.S., Niessen, C., Sparso, J., Van Berkel, K.: Low-power 15. Lorch, J.R., Smith, A.J.: PACE: A new approach to dynamic
operation using self timed circuits and adaptive scaling of the voltage scaling. IEEE Trans. Comput. 53(7), 856-869 (2004).
supply voltage. IEEE Trans. VLSI Syst. 2(4), 391-397 (1994). doi:10.1109/TC.2004.35
doi:10.1109/92.335008 16. Xiaobo, F., Carla, S., Alvin, R.: Memory controller policies for
11. Zhijian, L., John, L., Mircea, S., Kevin, S.: Design and implemen- DRAM power management. In: International Symposium on Low
tation of an energy efficient multimedia playback system. ACSSC, Power Electronics and Design, pp. 129-134, August 2001
pp- 1491-1497 (2006) 17. http://tcpmp.corecodec.org/
12. Gutnik, V., Chandrakasan, A.P.. Embedded power supply for 18. http://www.iwavesystems.com
low power DSP. IEEE Trans. VLSI Syst. 5(4), 425-435 (1997). 19. Liu, Y., Maxiaguine, A., Chakraborty, S., Ooi, W.T.: Processor fre-
doi:10.1109/92.645069 quency selection for SoC platforms for multimedia applications.
13. Lu, Y.H., Benini, L., Micheli, G.D.: Dynamic frequency scaling In: IEEE Real-Time Systems Symposium, Lisbon, pp. 336-345,
with buffer insertion for mixed workloads. IEEE Trans. Com- December 2004
put. Aided Des. Integr. Circuits Syst. 21(11), 1284—-1305 (2002). 20. SimpleScalar/ARM: http://www.simplescalar.com/v4test.html
doi:10.1109/TCAD.2002.804087 21. Luo, J., Jha, N.K.: Power-profile driven variable voltage scaling for
14. Im, C., Ha, S., Kim, H.: Dynamic voltage scheduling with buffers heterogeneous distributed real-time embedded systems. In: Inter-

for low-power multimedia applications. ACM Trans. Embed. Com-
put. Syst. 3(4), 686—705 (2004). doi:10.1145/1027794.1027796

@ Springer

national Conference on VLSI Design, pp.369-375 (2003)

http://dx.doi.org/10.1109/92.335008
http://dx.doi.org/10.1109/92.645069
http://dx.doi.org/10.1109/TCAD.2002.804087
http://dx.doi.org/10.1145/1027794.1027796
http://dx.doi.org/10.1109/TC.2004.35
http://tcpmp.corecodec.org/
http://www.iwavesystems.com
http://www.simplescalar.com/v4test.html

	An optimal speed control scheme supported by media serversfor low-power multimedia applications
	Abstract
	1 Introduction
	2 Problem formulation
	3 Energy optimization technique
	3.1 Bounds on the processor speed
	3.2 Estimation of the input buffer and the playback buffer
	3.3 The optimal speed profile algorithm

	4 Experimental results
	4.1 Comparisons with existing buffer-based speed control schemes
	4.2 A Comparison with the theoretical minimal energy consumption and the overhead of speed profiles

	5 Conclusion and future work
	6 Proof of optimality
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

