
Multimedia Systems (2009) 15:101–112
DOI 10.1007/s00530-009-0152-6

REGULAR PAPER

A joint encoder–decoder framework for supporting energy
efficient audio decoding

Wendong Huang · Ye Wang

Received: 14 November 2007 / Accepted: 10 February 2009 / Published online: 12 March 2009
© Springer-Verlag 2009

Abstract In comparison with the relatively slow progress
of battery technology, semiconductor memory has improved
much more rapidly, making storage a less critical limiting fac-
tor in designing low power embedded systems such as PDAs.
To exploit such technology trends, we present a novel frame-
work, a joint encoder–decoder framework (JEDF), which
allows the decoder to tradeoff energy and memory consump-
tion without sacrificing playback quality. We employ sum-
of-powers-of-two (SOPOT) technique, an approximate signal
processing (ASP) technique, in an MPEG AAC decoder to
reduce the computational workload. The SOPOT introduces
additional ASP noise (in the decoder) on top of the quan-
tization noise introduced in the process of lossy compres-
sion (in the encoder). The sum of these two kinds of noise
may become audible when it exceeds the masking thresh-
old. We tackle this problem from a new perspective: the pro-
posed JEDF allows the ASP and quantization noises to be
shaped jointly to match the masking threshold. In the case
that the perceptual room between the masking threshold and
the quantization noise is insufficient for the ASP noise, the
JEDF can reduce the quantization noise level which results in
an increase in bitrate. To implement the proposed scheme, we
have developed two new techniques: (1) SOPOT truncation
noise shaping; (2) truncation noise allocation based on a per-
ceptual model. Experimental results show the effectiveness
of our approach.

Communicated by Cormac Sreenan.

W. Huang · Y. Wang (B)
School of Computing, National University of Singapore,
Singapore, Singapore
e-mail: wangye@comp.nus.edu.sg

Keywords Energy efficiency · Workload reduction ·
Joint encoder-decoder framework (JEDF) · Joint ASP and
quantization noise shaping · SOPOT

1 Introduction

Energy efficiency is a critical design consideration for
battery-powered mobile devices, such as mobile phones,
PDAs and audio/video players, due to their limited battery
capacity. With the rapid growth of multimedia processing
applications being executed on these platforms, energy effi-
ciency methods optimized for these applications are becom-
ing increasingly important.

Among the techniques to reduce energy consumption of
multimedia decoding applications, a fundamental approach
is to reduce their computational workload. The reduced work-
load can be exploited by a voltage/frequency scalable pro-
cessor to save energy and to prolong the battery life. Towards
this, approximate signal processing (ASP) techniques have
been widely adopted [15], which exploit algorithms with
flexible structures, such as tunable word length, filter order,
etc., to achieve the desired tradeoff between accuracy of their
results and their utilizations of the resources. A well-known
technique in ASP is partial spectrum reconstruction (PSR),
which only reconstructs the spectrum of a part of the coded
signals, resulting in a low pass version of the original spatial
samples [1,5,14]. Essentially, ASP techniques may result in a
degradation of playback quality in exchange for a prolonged
battery life [2].

However, if the user requires both CD-quality audio and
long battery life, it is difficult to solve the dilemma with exist-
ing methods. To address this problem, we propose in this
paper a new approach towards saving energy. We achieve
energy efficient audio decoding by a joint encoder–decoder

123

102 W. Huang, Y. Wang

framework (JEDF). This approach allows us to introduce
a less critical limiting factor, the storage, into the tradeoff,
so that we can significantly reduce the decoding workload,
while maintaining transparent playback quality by a possible
sacrifice of the compression efficiency.

In our JEDF framework, the decoder employs ASP tech-
niques to reduce the computational workload, which results
in additional ASP noise. The saved computational work-
load is determined by the configuration of the ASP struc-
ture, where more workload is reduced at the expense of
introducing more ASP noise. In our scheme, the configu-
rations of the ASP structures of the decoder are specified
in the encoder. The encoder inserts additional side informa-
tion, which describes the desired configurations of the ASP
structure, into the compressed bitstream. In the process of
playback, the decoder reads the related side information and
adopts the specified configurations for the ASP algorithm
accordingly. In other words, the encoder can accurately con-
trol the ASP computational workload at the decoder.

To guarantee the playback quality, we extend the current
audio coding techniques by jointly shaping the ASP noise
and the quantization noise according to the masking thresh-
old. Masking threshold is a fundamental concept in modern
perceptual audio codecs, such as MPEG-1 Audio Layer III
(MP3) [7] and Advanced Audio Coding (AAC) [8]. As a
property of the human auditory system, the masking thresh-
old indicates that noise lower than this threshold is inaudible.
Exploiting this principle, existing perceptual audio encoders
compute maximal allowed quantization step sizes subject to
masking threshold constraints, which will produce the min-
imal bit length of coded audio signals. We define Masking-
to-Quantization-noise-Difference (MQD) as the difference
between the masking threshold and the quantization noise.
MQD indicates the maximum level of extra noise allowed by
the masking threshold, which will not degrade the playback
quality.

The key idea of our proposed work, as shown in Fig. 1,
is to reduce the quantization noise level in the encoder when
necessary, making the increased MQD to accommodate the
ASP noise introduced by the energy efficient decoder. This
approach ensures that the overall distortion is below the mask-
ing threshold. In comparison with conventional encoders,
this approach may increase the size of the compressed audio
files. Its effects can be analyzed from two perspectives. First,
the increased file size will lead to additional energy consump-
tion in the data reading process. However, reading operations
of an audio file are only responsible for a small fraction of the
overall energy consumption in an audio decoder. The stor-
age subsystems of mobile devices are typically made of Flash
ROM, which has lower energy consumption than main mem-
ory which is usually made of Dynamic RAM (DRAM) [22].
The reading process accesses the compressed audio file only
once, in comparison with the computation process, where

0 2 4 6 8 10 12 14 16 18 20 22
20

40

60

80

100

120

140

Frequency (KHz)

E
ne

rg
y

0 2 4 6 8 10 12 14 16 18 20 22
20

40

60

80

100

120

140

Frequency (KHz)

E
ne

rg
y

(a)

(b)

MQD AN

MT
QN
QN+AN

MT
QN
QN+AN

Fig. 1 Illustration of the proposed scheme, where MT, QN, AN, and
MQD (the latter two are identified by arrows) stand for masking thresh-
old, quantization noise, ASP noise, and masking-to-quantization-noise-
difference, respectively: a for a conventional AAC encoder: the sum of
the additional ASP noise and the quantization noise exceeds the mask-
ing threshold; b for our scheme: with reduced quantization noise, the
overall noise is below the masking threshold

the decompressed data is accessed by a series of processing
modules. In consideration of above factors, the small over-
head in the reading operation can be easily offset by the
significant savings achieved by the proposed scheme. This
is also well demonstrated by [19]: on a mobile device, the
file reading operation of a software MP3 decoder only con-
sumes 1.9% of the energy of its decoding process. Our pro-
posed scheme will lead to less than 10% increase in file sizes
for 128 Kb/s AAC bitstream and above. This suggests that
the additional energy consumption from file size increase is
negligible. The second concern is on the storage capacity of
mobile devices: if a mobile device has only limited storage
capacity, then we would prefer storage efficient schemes.
Fortunately, the rapid advance of the semiconductor tech-
nologies has made the storage a less critical limiting factor
in mobile devices. For instance, the well-known Apple iPod
nano series have already been equipped with 2, 4 and 8G
bytes of storage. Large storage capacities allow us to exploit
flexible design strategies in low power techniques for mobile
devices. Our scheme offers an appealing tradeoff between the
local storage and energy consumption. The projected applica-
tions of our scheme is download-playback services where the
user downloads audio clips once and play them back multiple
times from local storage. In such an application scenario, we
argue that the audio file size is less critical than battery life.

It should be noted that the proposed scheme differs fun-
damentally from existing energy-efficient techniques, where
the decoder is solely responsible for energy savings. Its supe-
riority to the existing approaches is twofold. First, the encoder
is responsible for computing the desired configurations of
the ASP structures, which alleviates the computation at the
decoder. Second, the encoder can access more information to

123

A joint encoder–decoder framework for supporting energy efficient audio decoding 103

achieve the goal than the decoder. For example, our scheme
accesses the masking threshold in the encoder to shape the
ASP noise, which is impossible for a decoder-only approach.

Finally it is worth pointing out that even though the pro-
posed scheme is a joint encoder–decoder framework, the gen-
erated bitstream is fully backward compatible to standard
AAC decoders with slightly improved playback quality due
to the slightly higher bitrate. This is a desirable feature to
facilitate its applications.

The rest of the paper is organized as follows. In Sect. 2,
we briefly review the noise-shaping technique in AAC and
computation-efficient techniques for transforms. Then we
provide an overview of our work in Sect. 3. In Sect. 4, we
present a detailed description of the technology of joint ASP
and quantization noise shaping for AAC encoding. In Sect. 5,
we present the experimental results. Finally, we conclude the
paper in Sect. 6.

2 Related works

2.1 Noise-shaping techniques in AAC

In AAC [8], the full spectrum of a frame is partitioned into
49 scale factor bands. Different scale factor bands may have
different masking thresholds for two reasons: (1) different
sensitivities of the human auditory system over these scale
factor bands, and (2) the characteristics of the audio signal.
To fully exploit the variations of masking thresholds, differ-
ent quantization step sizes are used to quantize the frequency
coefficients with the goal of keeping the quantization noise
below the masking threshold. This results in different quan-
tization noises for different scale factor bands. On the other
hand, the transparent playback quality is guaranteed if for
each scale factor band, the following relationship holds:

EQ(i) =
∑

k∈β(i)

(F(k) − Q(F(k)))2 ≤ ET (i), 0 ≤ i < 49

(2.1)

where β(i) is the range of frequency coefficients for scale
factor band i, F(k) and Q(F(k)) are the original kth fre-
quency coefficient and its quantized value, EQ(i) and ET (i)

are the quantization noise and the masking threshold for scale
factor band i , respectively.

The quantization process can be expressed as [8]:

Q(F(k)) = int

(
F(k)

3
4

�Q
+ 0.4054

)
(2.2)

where �Q is the quantization step size. As shown in (2.2), the
quantization noise EQ(k) increases as the quantization step
size �Q becomes larger.

2.2 Computation efficient techniques for transforms

In the literature, typical computation-efficient algorithms for
transforms, including (Inverse) Fast Fourier Transform
((I)FFT), (Inverse) Discrete Cosine Transform ((I)DCT) and
(Inverse) Modified Discrete Cosine Transform ((I)MDCT),
can be divided into two classes: data driven appro-
aches and fixed point approximation approaches. Data driven
approaches include pruning techniques [6,12,21] and for-
ward mapping IMDCT [13]. This class of approaches elimi-
nates the calculation for zero-valued coefficients since these
coefficients make no contribution to the output of the trans-
form. The workload reduction of data-driven approaches
largely depend on the statistical properties of the input
sequence and block length of the transform. An important
property of this class of approach is that the efficiency of
workload reduction degrades rapidly as the size of the trans-
form block grows.

Fixed point approximation approaches include fixed point
multiplication methods [4] and Sum-Of-Powers-Of-Two
(SOPOT) methods [3,11]. In transforms including IMDCT,
a large part of computation involves floating point multi-
plications. As mobile devices are rarely equipped with the
floating point unit, these floating point multiplications can
be simulated by software packages. As a result, the required
workload increases significantly. To achieve computation-
efficient implementations, floating point computations are
widely replaced by fixed point approximation approaches in
mobile devices. Fixed point multiplication scales and approx-
imates those floating point coefficients by integers. The
resulting transforms have much lower computational work-
load than the floating point version and therefore are widely
employed in various applications. However, it is argued that
the 32-bit integer cannot provide sufficient accuracy for long
block transforms [3]. Moreover, it cannot provide tunable
tradeoffs between computational workload and ASP noise.
As an alternative, SOPOT methods decompose the operation
of multiplication into the sum of powers of two operations.
For example, we can calculate x ·0.40625 as x ·2−1−x ·2−3+
x · 2−5. For SOPOT, an effective way to save the computa-
tional workload is to reduce the number of SOPOT terms,
which results in the truncation noise: more workload can be
saved at the cost of introducing more truncation noise.

3 Overview of the proposed work

We have implemented our scheme with the ISO/IEC 13818-7
Advanced Audio Coding format [8] for the sake of proof of
concept. In [8], three profiles are provided: main profile, low
complexity profile, and scalable sample rate profile. Among
them, the low-complexity profile has found the most wide-
spread use. Therefore, we have implemented our scheme in
low-complexity profile to broaden its applicability.

123

104 W. Huang, Y. Wang

Conventional

AAC

Encoder Core

ASP Workload
 Reduction

Workload
Estimation

Quantization

M
U

X

PCM

Frequency
coefficients

Masking
threshold

Side
info

Compressed
coefficients

ASP
info

Updated
Side info

Updated
Side info

C
om

pressed
bitstream

Fig. 2 Architecture of the proposed audio encoder

The block diagram of the proposed audio encoder is
depicted in Fig. 2. Our scheme is essentially a two-pass
encoder based on the frame structure of AAC. The first pass
is implemented by a conventional AAC encoder core, which
analyzes the PCM data of the current frame subject to the
bit rate constraint, and provides three kinds of information to
support the second pass processing: masking thresholds for
all scale factor bands, frequency coefficients, and their asso-
ciated side information, including the quantization step sizes.

Analogous to the bit rate constraint over a conventional
AAC encoder, we introduce a computational workload level
of the ASP algorithm as the constraint for the second pass.
The second pass of the proposed scheme searches desired
ASP configurations such that both the MQD requirement
and the computational workload requirement are met. This
pass involves two important modules: ASP workload reduc-
tion and workload estimation. The workload estimation mod-
ule controls the processing of the second pass. Based on the
ASP parameters provided by the ASP workload reduction,
the workload estimation module derives the corresponding
workload of decoding the current frame. If the workload
is lower than the workload constraint, the workload esti-
mation module will invoke the quantization and multiplier
(MUX) modules, etc., with the updated side information.
The involved modules compress the frequency coefficients
of the current frame and multiplex the compressed data and
side information into the coded bitstream. If the workload
is higher than the workload constraint, the workload estima-
tion module will reduce the quantization step size of some
scale factor bands to yield an increased MQD level. With
the updated side information, the workload estimation mod-
ule invokes the ASP workload reduction module. This pro-
cess repeats until the actual workload is below the workload
constraint or the required quantization step sizes cannot be
supported by the AAC specifications.

The ASP workload reduction module is responsible for
reducing the computational workload of the decoding pro-
cess. Among various processing modules in an AAC decoder
of low complexity profile, we focus on the IMDCT due
to two factors: (1) it is challenging to design an effective
ASP method for a long block of IMDCT (AAC employs
a 2048-point IMDCT): as shown in Sect. 2.2, for existing

techniques, either the efficiency of workload reduction is
limited or the ASP noise is not acceptable; (2) IMDCT is
responsible for a major part of the computational workload
of the whole decoding process, especially with high accu-
racy computation. The latter will be shown in Sect. 5.1. In
most AAC decoders, the 2048-point IMDCT is computed
using a 512-point IFFT and some pre- and post-rotations.
In this method, IFFT is responsible for about 50% of the
workload of the IMDCT. As the first step, we concentrate on
IFFT to achieve workload reduction. Based on the analysis in
Sect. 2.2, we have chosen SOPOT as the implementation of
IFFT at decoder, since it provides: (1) high dynamic range of
computation accuracy; (2) tunable tradeoffs between compu-
tational workload and truncation noise. These two properties
suggest that it is appropriate for noise shaping in our scheme.
In addition, it only requires two simple arithmetic operations,
shift and addition, which are found in a wide range of mobile
devices. To perform workload reduction, we have developed
joint ASP and quantization noise shaping for AAC encod-
ing. This method comprises two parts. The first part includes
the techniques to shape the SOPOT truncation noise to fit
the noise-shaping framework used by an AAC encoder. The
second part concentrates on how to allocate MQD to its asso-
ciated SOPOT coefficients to effectively reduce the compu-
tational workload. These two parts are presented in Sects. 4.1
and 4.2, respectively.

4 Joint ASP and quantization noise shaping

4.1 Truncation noise shaping of SOPOT coefficients

As discussed above, truncated SOPOT coefficients cause
additional noise in the reconstructed data. To guarantee the
transparent playback quality, we need to keep these trunca-
tion noises below MQD. These MQD levels vary dynami-
cally as we may change the quantization step sizes of some
scale factor bands. Towards this, we shape the truncation
noise of the SOPOT coefficients to match the level of MQD.
In our work, the SOPOT coefficient truncation noise shap-
ing has two implications. First, we need to truncate dif-
ferent coefficients at different positions. This requirement
enables us to fully exploit the variations of MQDs: for larger
MQDs, we can discard more SOPOT terms to save computa-
tions. Second, the truncation noise over a certain frequency
coefficient should be orthogonal to other frequency coeffi-
cients. We call this property the orthogonality of the trun-
cation noise. The orthogonality of the truncation noise can
be explained as follows. When we perform IFFT on a fre-
quency coefficient with the truncated SOPOT coefficients,
time domain noises are produced over the reconstructed data.
The orthogonality of the truncation noise requires that the
spectrum of those time domain noises is only related to the

123

A joint encoder–decoder framework for supporting energy efficient audio decoding 105

source frequency coefficient, no other frequency coefficients
are involved. The orthogonality of the truncation noise elimi-
nates the cross scale factor band noise, which will complicate
the truncation noise shaping process.

The truncation of SOPOT coefficients appears to be equiv-
alent to coefficient quantization problems of various trans-
forms in the literature, such as [4,9,16], which have attracted
the attention of many researchers. However, these results can-
not be applied to our scheme for the following reasons. First,
all of them have been developed to address the issue of finite
word length of registers and these schemes have modeled
the truncation errors as independent and identical distribu-
tion random variables. This implies that their results are not
valid for the shaped truncation noises in our scheme. Sec-
ond, in those works, the truncation noise resulting from a
frequency coefficient will be spread to other frequency coef-
ficients, which is not desirable for accurate noise control.

To shape the truncation noise, in Sect. 4.1.1, we propose a
method to achieve the orthogonality of truncation noise using
IFFT coefficient blocks. In Sect. 4.1.2, we propose a method
to deal with the cross terms among coefficient blocks.

4.1.1 Shaping truncation errors of SOPOT coefficients via
a single IFFT coefficient block

The N-point Discrete Fourier Transform and its inverse trans-
form are defined as (4.1) and (4.2), respectively:

F(k) =
N−1∑

n=0

f (n) · W k·n, 0 ≤ k ≤ N − 1 (4.1)

f (n) = 1

N

N−1∑

k=0

F(k) · W −n·k, 0 ≤ n ≤ N − 1 (4.2)

where W n = exp(− j · 2π · n/N)

When we apply the IFFT to compute (4.2), the rotation
operation W −nk is decomposed into a series of sub-rotations
W −α(·)

(n,k) [16], as illustrated in Fig. 3:

v(k)∏

i=1

W α(i)
(n,k) = W nk (4.3)

where v(k) is the number of sub-rotations for F(k)

In particular, from (4.2), we can derive τk(n), 0 ≤ n ≤
N − 1, which are the temporal components generated from
frequency coefficient F(k):

τk(n) = 1

N
· F(k) ·

v(k)∏

i=1

W −α(i)
(n,k) (4.4)

The truncation of a SOPOT coefficient is equivalent to intro-
ducing an additive error, and the reconstructed sample can

be calculated as:

f̂ (n) = 1

N

N−1∑

k=0

F(k) ·
v(k)∏

i=1

(
W −α(i)

(n,k) + δ
(i)
(n,k)

)
(4.5)

Next we investigate the truncation errors when we only trun-
cate the SOPOT coefficients of a single IFFT coefficient
block. We define an IFFT coefficient block as {W −α(i)

(n,k) |0 ≤
n ≤ N − 1}, which are those coefficients grouped in the
same box in Fig. 3. An important property of the coefficient
block is that the transform of a frequency coefficient can be
decomposed into a series of calculations using the coeffi-
cient blocks. This property allows us to control the output of
the coefficient block to achieve the desired truncation noise
shaping.

Without loss of generality, let the j th IFFT coefficient
block associated with F(k) be truncated. From (4.4), we
have:

τ̂k(n) = 1

N
F(k) ·

((
W −α(j)

(n,k) + δ
(j)
(n,k)

))
·

v(k)∏

i=1,i �= j

W −α(i)
(n,k)

(4.6)

To derive the spectrum of the truncation error, we conduct
DFT over the time domain errors. Based on (4.1), and (4.4),
we can represent the spectral error over frequency coefficient
F(m) as

�F̂k(m) = 1

N
·

N−1∑

n=0

(
τ̂k(n) − τk(n)

) · W nm (4.7)

Substituting (4.4), (4.6) into (4.7), and using (4.3), we have

�F̂k(m) = F(k)

N

·
N−1∑

n=0

⎛

⎜⎜⎝
v(k)∏

i=1

W −α(i)
(n,k) + δ

(j)
(n,k)

v(k)∏

i=1
i �= j

W −α(i)
(n,k) −

v(k)∏

i=1

W −α(i)
(n,k)

⎞

⎟⎟⎠ · W nm

= F(k)

N
·

N−1∑

n=0

⎛

⎜⎜⎝δ
(j)
(n,k)

v(k)∏

i=1
i �= j

W −α(i)
(n,k)

⎞

⎟⎟⎠ · W nm (4.8)

In (4.8), it implies that the truncation noise of the frequency
coefficient F(k) will be spread to other frequency coeffi-
cients when {δ(j)

(n,k)|0 ≤ n ≤ N − 1} are random variables.
This is the exact case for conventional analysis of coefficient
quantization problems.

To guarantee the orthogonality of the truncation noise,
the truncation errors of a coefficient block should satisfy
the orthogonal condition of the truncation noise, which is
described in (4.9):

δ
(j)
(m,k) · W α(j)

(m,k) = δ
(j)
(n,k) · W α(j)

(n,k), 0 ≤ m, n < N (4.9)

123

106 W. Huang, Y. Wang

In other words, {δ(j)
(n,k) · W α(j)

(n,k)|0 ≤ n ≤ N − 1} have equal
values. This is shown as follows.

�F̂k(m)

= F(k)

N
·

N−1∑

n=0

⎛

⎜⎜⎝δ
(j)
(n,k)

v(k)∏

i=1
i �= j

W −α(i)
(n,k)

⎞

⎟⎟⎠ · W nm

= F(k)

N
·

N−1∑

n=0

⎛

⎜⎜⎝δ
(j)
(n,k)

v(k)∏

i=1
i �= j

W −α(i)
(n,k)

⎞

⎟⎟⎠ ·W nk ·W −nk ·W nm

= F(k)

N
·
(
δ
(j)
(n,k)W

α(j)
(n,k)

) N−1∑

n=0

W −nk · W nm

Clearly,
∑N−1

n=1 W nk · W −nm = 0 for any m �= k. This justi-
fies the orthogonality of the truncation noise.

It should be noted that when we let various {δ(j)
(n,k) · W α(j)

(n,k)

|0 ≤ n ≤ N − 1} have equal values, {δ(j)
(n,k)|0 ≤ n ≤ N − 1}

are no longer truncation errors. But they support the trun-
cation operation in the way that these errors dominate the
distortion and make the actual truncation errors of smaller
levels negligible. Thus the magnitude of δ

(i)
(·,k) can serve as

an indicator for the truncation position of the corresponding
SOPOT coefficient, which will be shown in Sect. 4.2. In this
sense, we still call them “truncation errors”.

4.1.2 Modeling the noise from a series of IFFT coefficient
blocks

We have proposed a method to shape the truncation errors by
a single IFFT coefficient block in Sect. 4.1.1. As illustrated

in Fig. 3, most frequency coefficients are associated with a
series of blocks. To build a model to represent the sum of
truncation noises, which results from a series of blocks, for a
frequency coefficient, we need to extend the results presented
in Sect. 4.1.1.

The sum of truncation errors for frequency coefficient
F(k) can be represented as

e(k) = F̂(k) − F(k)

= F(k)

N

N−1∑

n=0

⎛

⎝
v(k)∏

i=1

(
W−α(i)

(n,k)
+ δ

(i)
(n,k)

)
−

v(k)∏

i=1

W−α(i)
(n,k)

⎞

⎠ · W n·k

(4.10)

As the errors are of small values, we can neglect the higher
order error terms. Substituting (4.3), we have

v(k)∏

i=1

(
W −α(i)

(n,k) + δ
(i)
(n,k)

)
−

v(k)∏

i=1

W −α(i)
(n,k)

=
v(k)∑

i=1

δ
(i)
(n,k)·

v(k)∏

j=1, j �=i

W −α(j)
(n,k)

= W −n·k
v(k)∑

i=1

δ
(i)
(n,k)·W α(i)

(n,k) (4.11)

From (4.11), for any i ∈ [1, v(k)], if we let {δ(i)
(n,k) · W α(i)

(n,k)|
0 ≤ n ≤ N − 1} have equal values, the orthogonality of the
truncation noise holds for a series of coefficient blocks. For
convenience, when the orthogonality of the truncation noise
holds, we denote δ

(i)
(n,k) · W α(i)

(n,k) = |δ(i)
(k)| · e jϕ(k,i).

Thus the energy of the accumulated truncation noises for
frequency coefficient F(k), which results from a series of

Fig. 3 The flow graph of a
16-point inverse FFT with
marked coefficient blocks

123

A joint encoder–decoder framework for supporting energy efficient audio decoding 107

blocks, is represented as

|eT (k)|2 = F2(k) ·
∣∣∣∣∣∣

v(k)∑

i=1

∣∣∣δ(i)
(k)

∣∣∣ · e jϕ(k,i)

∣∣∣∣∣∣

2

(4.12)

As we further develop (4.12), a critical issue is how to effec-
tively deal with the cross terms between truncation errors. In
statistical model based approaches [9,16], these truncation
errors are assumed as independent random variables with
mean value of zero and their cross terms will vanish for the
expectation of sum of truncation noises. In our work, how-
ever, these errors are subject to the orthogonal conditions,
and they cannot be assumed as independent random variables
with mean value of zero. These non-zeroed cross terms lead
to two undesired consequences. First, these cross terms will
complicate the analysis of noise allocation for IFFT coeffi-
cient blocks. Second, and more importantly, these cross terms
potentially lead to additional noises. These additional noises
will degrade the efficiency of workload reduction. To address
the issue of the cross terms between truncation errors, we sup-
press the sum of truncation noises by shaping the angles of the
truncation errors. Furthermore, the angle-shaping technique
enables us to develop a cross term deleted representation of
the sum of truncation noises.

To facilitate the angle shaping, we limit the value set of
{ϕ(k, j)|0 ≤ k ≤ N − 1, 1 ≤ j ≤ v(k)} to be {π/4, 5π/4}.
These two angles are opposite to each other. When we assign
those block truncation errors with different angles, these trun-
cation errors will subtract from each other, to make the noises
as small as possible. Further, it reduces the angle-shaping pro-
cess into “sign” assignment operation: “+” denotes π/4, and
“−” denotes 5π/4. We have designed the following algo-
rithm to accomplish the assignment for all the blocks.

We organize IFFT coefficient blocks as the following
structure: a block and all of its left-covering blocks form
a block tree and the largest block acts as the root of the tree.
On the other hand, for block k, we define P(k) as a block set,
all of its elements left-cover block k. For example, in Fig. 3,
{B(1), B(3), B(6), B(7)}, {B(3), B(7)} and {B(7)} are three
of such block trees; P(6) = {B(1)} and P(7) = {B(3), B(1)}.

We start with the largest tree and perform the assignment
for the root. Deleting the root which has been processed, the
current tree is decomposed into several smaller trees. We then
iteratively move to these block trees and conduct the same
computation for their roots until all blocks are processed.

We denote δ j and S(j) as the noise level and sign of block
j . For current block k, given the truncation noise levels of all
coefficient blocks which left-cover block k, we have:

S(k) = −SI G N

⎛

⎝
∑

j∈P(k)

S(j) · ∣∣δ j
∣∣2

⎞

⎠ (4.13)

According to this algorithm, we can derive an upper bound
on the overall truncation noise.

In (4.13), the “sign” relationship among truncation errors
is described. Next we need to determine the angle of the
concerned truncation error according to its given “sign”.

It should be noted that according to our angle-shaping
specification, π/4 + π → 5π/4, and 5π/4 + π → π/4. In
other words, sign switching can be achieved by rotating an
angle of π . From (4.13), we have

ϕ(k, v(k)) = π + �

⎛

⎝
v(k)−1∑

i=1

∣∣∣δ(i)
(k)

∣∣∣ · e jϕ(k,i)

⎞

⎠ (4.14)

Thus
∣∣∣∣∣∣

v(k)∑

i=1

∣∣∣δ(i)
(k)

∣∣∣ · e jϕ(k,i)

∣∣∣∣∣∣

2

≤
∣∣∣δ(v(k))

(k)

∣∣∣
2 +

∣∣∣∣∣∣

v(k)−1∑

i=1

∣∣∣δ(i)
(k)

∣∣∣ · e jϕ(k,i)

∣∣∣∣∣∣

2

(4.15)

In this way, we can iteratively decompose the last term at
the right side of (4.15) and we have a cross-term deleted
representation of the sum of truncation noise:

|e(k)|2 = F2(k) ·
∣∣∣∣∣∣

v(k)∑

i=1

∣∣∣δ(i)
(k)

∣∣∣ · e jϕ(k,i)

∣∣∣∣∣∣

2

≤ F2(k) ·
v(k)∑

i=1

∣∣∣δ(i)
(k)

∣∣∣
2

(4.16)

4.2 Noise allocation over SOPOT coefficient blocks

Given the MQDs of all the scale factor bands, we need to
allocate them to the IFFT coefficient blocks. Based on its
allocated noises, we can perform truncation over an IFFT
coefficient block to achieve workload reduction.

First we need to establish the relationship between the
number of reserved SOPOT terms and their corresponding
truncation noise. We denote b as the truncation position of
coefficient x , and Ii (x) as its indicator of SOPOT terms. Then
we have

b−1∑

i=0

Ii (x) ≤ b,

{
Ii (x) = 1, x has a SOPOT term at position i

Ii (x) = 0, x has no SOPOT term at position i

(4.17)

Its implication is straightforward: we can effectively reduce
the number of SOPOT terms by left-shifting the truncation
position. Due to this, we use the truncation position as the
estimation of the computational workload of a SOPOT coef-
ficient. On the other hand, the relationship between the trun-
cation noise e2

t and the truncation position of b has been
well-established in the literature.

123

108 W. Huang, Y. Wang

For a fixed point coefficient, we have [9]:

e2
t (b) = 2−2b/6 (4.18)

Next we need to associate truncation noise with the allocated
noise |δi |2 of block i. Towards this, we choose the truncation
position for block i as follows, where c > 0, being a constant
for all coefficients:

b = arg min
j

(
I j (|δi |) = 1

) + c (4.19)

This indicates that we only reserve c bits of |δi | from its
first non-zero most significant bit and the rest of the bits are
discarded to save computation. Thus we can derive the rela-
tionship between the allocated noise |δi |2 of block i and its
associated truncation noise. We first calculate the expecta-
tion of the ratio between the value of those reserved bits of
|δi |, which we denote as |δ̃i |, and the unit at the truncation
position, whose value is 2−b according to (4.19). Such ratio
can be employed to develop the concerned relationship. Con-
sidering |δ̃i |, (a). the bit offsetting the truncation position c
bits must be 1, following (4.19); (b). the value of the rest
(c − 1) bits can be assumed to be evenly distributed, ranging
from 0 to 2c − 1. Then we have

|δ̃i |
2−b

= 2c + 2−c ·
2c−1∑

k=0

k = 2c + 2c−1 − 0.5 (4.20)

Making use of the relationship between the actual truncation
error et (b) and 2−b described in (4.18), and |δi | = |δ̃i |+et (b)

, we have

|δi |2 =
⎛

⎝

∣∣∣δ̃i

∣∣∣ + et (b)

et (b)

⎞

⎠
2

· et (b)

=
(√

6 ·
(

2c + 2c−1 − 0.5
)

+ 1
)2 · e2

t (b) (4.21)

In (4.21), we can see that the constant c determines the scal-
ing operation by right-shifting the truncation position. Due
to this, we call c the scaling factor of truncation noise. The
relationship described in (4.21) implies that the truncation
noise is reduced rapidly as c grows. For example, when c
equals 3, the truncation noise is only a factor of 0.00117 of
the allocated noise. Therefore these actual truncation errors
can be safely neglected when using appropriate values of the
scaling factor of truncation noise.

From (4.18) and (4.21), we have b = −0.5 · log2(
√

6 ·
(2c + 2c−1 − 0.5) + 1)2 − 0.5 log2 |δi |2. Neglecting those
constants, we can estimate the workload of a SOPOT coeffi-
cient of the i th block as − log2 |δi |2. Based on (2.1), we can
formulate the noise allocation problem as follows:

Min
N/2−1∑

j=1

−l(j) · log2

∣∣δ j
∣∣2

Subject to
∑

k∈β(i)

|eT (k)|2 + EQ(i) ≤ ET (i), 0 ≤ i < 49

(4.22)

where N is the block size, l(j) is the number of coefficients
of the j th coefficient block.

Based on (4.16) and the result in [10], which calculates
the EQ(i) in terms of the quantization step size and the coef-
ficient values of scale factor band i , we can develop (4.22)
into the following, where �Q(i) denotes the quantization step
size for scale factor band i :

∑

k∈β(i)

F2(k)

v(k)∑

j=1

∣∣∣δ(j)
(k)

∣∣∣
2 = ET (i) − 4

27
· �2

Q(i)

∑

k∈β(i)

|F(k)|0.5, 0 ≤ i < 49 (4.23)

Although this is a problem of finding extrema under con-
straints which can be solved by the Lagrange multiplier
method in principle, the actual computation is prohibitively
complex: it needs to solve a non-linear equation group includ-
ing 49 equations, having 49 variables with maximal power
of 255.

To address this issue, we resort to a heuristic to accelerate
the computation and find a satisfactory solution. We make
use of the same structure of IFFT coefficient blocks used in
algorithm 4.1. Instead of finding the global optimal solution,
we search a value of the truncation noise for the root of a
block tree which will make the current block tree have the
smallest sum of reserved bits. By deleting the root which has
been assigned a truncation noise value, the current tree is
decomposed into several smaller trees. We iteratively move
to these block trees and conduct the same computation for
their roots until each block is assigned a truncation noise.

In this method, we are frequently required to allocate the
allowed noise of a scale factor band or a frequency coefficient
over its associated IFFT coefficient blocks to achieve the min-
imal workload, without involving other scale factor bands or
frequency coefficients. We call this problem “independent
noise allocation”. In this case, the allocation algorithm should
allocate larger noise to blocks including more coefficients.
For IFFT, although different stages have different numbers
and sizes of blocks, the total number of coefficients remains
the same for all stages. Based on this observation, identical
noise should be allocated to all of the associated coefficient
blocks.

The proposed allocation method consists of two steps.
The first step is to allocate the MQD of a scale factor band to
its frequency components. Following the independent noise
allocation principle, we should allocate identical noise to all

123

A joint encoder–decoder framework for supporting energy efficient audio decoding 109

the blocks associated with the scale factor band. In this way,
for scale factor L , let its associated blocks be B(L), and we
have |δ(i)

(m)| = |δ(j)
(n)| for any m, n ∈ B(L), and i ∈ v(m), j ∈

v(n). Then we can derive the initial allowed noise for each
coefficient of the scale factor band from (4.23). For a fre-
quency coefficient k, let its initial allowed noise be ε(k), its
associated block number be ‖B(k)‖, and the average noise
of each block for the j th scale factor band be ζ(j), then we
have

ζ (j) = ET (j) − 4
27 · �2

Q(i)

∑
k∈β(i) |F(k)|0.5

∑
k∈β(j) F2(k) · ‖B(k)‖ (4.24)

ε(k) = ‖B(k)‖ · ζ(j), k ∈ β(j) (4.25)

After the first step, a coefficient block usually has multiple
noise values assigned by various frequency coefficients. In
the second step, we will choose an appropriate value for each
coefficient block. As discussed earlier, we reduce this prob-
lem to find a desired noise value for the root of a block tree.
Let the block index of the root be i , its associated frequency
coefficients be T (i), block numbers between F(j) and block
i be R(i, j), the residual allowed noise for F(j) be

ε(j), the
desired noise value of the root be ε̄i . To estimate the work-
load for F(j), we perform the independent noise allocation
over its residual allowed noise. Thus ε̄i will minimize the
following:

− l(i) · log2 ε̄i −
∑

j∈T (i)

R(i, j) · log2

(

ε(j) − ε̄i

R(i, j)

)
(4.26)

Numerical techniques can be employed to find the desired
value of ε̄i in (4.26).

4.3 The workload estimation module

As discussed in Sect. 3, the workload estimation module pro-
vides three functionalities: (1) to estimate the workload for
the set of truncated SOPOT coefficients; (2) to choose a scale
factor band to decrease its quantization step; (3) to control
the second pass processing. In this section, we will discuss
these three aspects in detail.

In SOPOT operations, the basic calculation units are the
shift and add operations. This enables us to measure the com-
putational workload of SOPOT IFFT in terms of number of
shift and add operations. This measure is similar to the wide-
spread workload estimation for IFFT of the floating point
version using the number of multiplications. On the other
hand, we can derive the exact number of shift-and-add oper-
ations from the sum of reserved SOPOT terms of the IFFT.

When the estimated workload is greater than the work-
load constraint, the workload estimation module needs to
choose a scale factor band to reduce its quantization step
size. From (4.22), we can see that MQD of the j th scale
factor band allocates truncation noise ζ(j) for each of its

associated coefficient blocks. On the other hand, these coeffi-
cient blocks are also shared by other scale factor bands. Then
these blocks have different allocated truncation noises from
different scale factor bands. To provide transparent playback
quality, the performance of workload reduction is limited by
the minimal level of the various allocated truncation noises.
Due to this fact, we should choose scale factor band j to
increase its MQD, where ζ(j) ≤ ζ(i), 0 ≤ i < 49.

The workload estimation module employs an iteration
procedure to control the second processing pass. As the pro-
cedure of control is presented in Sect. 3, we only present
the termination conditions of the processing loop. Normally
the processing loop terminates when the estimated work-
load is below the specified workload level. However, this is
not always possible to achieve. In this case we exploit two
other termination conditions, which are in accordance with
those used in a conventional AAC encoder [8]: (1) The next
iteration would require all of the scale factor bands to be
amplified; (2) The next iteration would cause the difference
between two consecutive scale factors to exceed 60.

5 Experimental results

To evaluate the performance of the proposed scheme, we
implemented a prototype. We employed Free Advanced
Audio Coder (FAAC) version 0.60 [17] as the conventional
AAC encoder core in our work, as FAAC is a well-known
open source AAC encoder. We note that FAAC 0.60 is not
the latest version. (In August 2006, FAAC version 1.25 was
released.) We have chosen FAAC 0.60 as our implementa-
tion platform because that the important algorithms used in
the FAAC 0.60 are in accordance with those described in the
informative parts of AAC standards [8]. On the other hand,
FAAC 1.25 employs new techniques, which are not well-doc-
umented, for psychoacoustic modeling and noise allocation.
Both of them produce output for the second processing pass.
In this case, well-documented techniques are better for serv-
ing as a proof of concept.

By analyzing the output of the conventional encoder core,
we have found that the masking threshold constraints of some
scale factor bands had been violated sometimes. For these
scale factor bands, we define the initial level of their MQDs
as zero, rather than a negative value. This method ensures
that the generated audio file will not be of lower quality than
the version by the conventional encoder core.

An important parameter, which is missing in the conven-
tional AAC encoder core, is the scaling factor of the trunca-
tion noise, which has been defined in (4.20). The value of the
scaling factor has a close relationship with the computational
workload and the playback quality. Due to its importance, we
perform experiments for various values of the scaling factor,
ranging from 3 to 5.

123

110 W. Huang, Y. Wang

We carried out experiments on six selected audio clips,
including five popular songs, and one instrumental music.
All of them were extracted from CDs, coded in WAV format,
at a sampling rate of 44,100 samples/s, 16 bits per sample,
stereo mode.

5.1 IFFT workload reduction

A primary motivation of our work is to reduce the compu-
tational workload at the decoder side. To achieve this, we
implemented IFFT in SOPOT, which is an important step in
IMDCT module.

We first estimated the workload portion of IMDCT module
in the low complexity profile. Towards this, we executed an
AAC decoder, Free Advanced Audio Decoder 2 (FAAD2) 2.0
[17] on an ARM simulation tool: Simplescalar/arm [18]. We
carried out the simulation in two settings: (1) floating point
version: we made use of a software package to implement
the floating point operations for all the processing modules;
(2) fixed point version: we employed un-truncated SOPOT
coefficients for IMDCT, which does not introduce any coeffi-
cient quantization noise, and fixed point multiplication for the
other modules. This was because fixed point multiplication
cannot provide required accuracy for 2,048-point IMDCT.
Simulation results showed that IMDCT is responsible for 86
and 92% workload of the entire decoding process, in the float-
ing point version, and the fixed point version, respectively.
These results provide strong motivations for workload reduc-
tion in IMDCT. In addition, IFFT is responsible for around
55% workload of IMDCT in both settings.

Next we estimated the workload reduction of IFFT. We
measured the computational workload of IFFT of SOPOT
version in terms of the number of shift-and-add operations, as
the method used in Sect. 4.3. We have counted the exact num-
ber of shift-and-add operations when performing the IFFT.
As mentioned above, the workload is related to the scaling
factor of truncation noise. We varied the values of the scaling
factor of truncation noise from 3 to 5, to change the work-
load. The baseline of the workload was calculated using the
un-truncated SOPOT coefficients for the same input data. We
present the results in Fig. 4, where the baseline workload is
assumed as unit.

As shown in Fig. 4, we have achieved significant work-
load reduction for IFFT computation in an AAC decoder.
When the proposed work encodes the audio data with the
scaling factors of truncation noise of 3, 4 and 5, on average,
we save 77.8, 75.0 and 72.8% computations, respectively. To
our knowledge, the presented results are better than all the
results reported in the literature for a 512-point of transform.
In general, although various methods have been proposed
to save the computations for transform, it is hard to find an
effective way to reduce the workload of a long block of trans-
forms. We illustrate this fact by the following examples.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6

Sample index

N
o

rm
al

iz
ed

 w
o

rk
lo

ad

SF:3 SF:4 SF:5

Fig. 4 Normalized workload for the test audio clips, where SF denotes
the scaling factor of truncation noise

In terms of the pruning techniques, for IDCT, the relation-
ship between workload reduction ratio G, the block size B,
and the number of non-zero frequency coefficient b, can be
described as follows [21]:

G ≈ 1 − log b/log B (5.1)

We can then estimate the workload reduction for a 512-point
of IDCT using the pruning technique. According to (5.1),
even though we discard three quarters of the frequency coef-
ficients, where audible quality degradation occurs, we can
only achieve 22.2% computation savings for the best case.

On the other hand, for approximate techniques, the basic
assumption is that the noise introduced by approximation is
negligible in comparison with the energy of the signal. This
assumption is valid only for transforms with short block [3].
However, the approximation noise accumulates as the block
size increases. As a consequence, the approximation noise
can no longer be neglected for a long block transform.

We solved the problem in an alternative way. In a simi-
lar manner to the “lossy compression” used in audio encod-
ing to achieve high-compression ratios, for the long block
size of transform, we performed “lossy transform”, where
we allowed the noises with larger levels to achieve signifi-
cant workload reduction. We then addressed these noises by
exploiting MQD and the possibility to control the quantiza-
tion noise.

5.2 Subjective evaluation

To evaluate our scheme, we carried out subjective tests on
a group of 30 subjects (male and female undergraduate stu-
dents with normal hearing). All subjects were asked to evalu-
ate audio quality using the mean opinion score (MOS), which
is a five-point scale (5-excellent, 4-good, 3-fair, 2-poor, and
1-bad).

We encoded the selected six audio clips into AAC bit-
streams using the prototype encoder. We set the encoding
parameters for the conventional AAC encoder core as fol-
lows: bitrate 128 Kb/s, switching on low complexity profile,
temporal noise shaping, Middle/Side coding, and switching

123

A joint encoder–decoder framework for supporting energy efficient audio decoding 111

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

1 2 3 4 5 6
Sample index

M
O

S
Baseline SF:3 SF:4 SF:5

Fig. 5 Averaged MOS values for the test audio clips, where SF denotes
the scaling factor of truncation noise

off long term prediction, perceptual noise substitution, and
intensity coding, which are typical options for an AAC
encoder. We prepared four copies for each program. Three
copies were generated by our scheme with scaling factor of
truncation noises as 3, 4, and 5, and the corresponding work-
load reduction ratios were chosen as 77.8, 75.0, and 72.8%,
respectively. The fourth copy was generated by a FAAC 0.60
encoder with the same encoding parameters, which served as
the baseline sample. In addition, each program was also given
the uncompressed clip as reference of MOS 5. For fairness,
all test samples were arranged in random order. We presented
the averaged MOS values for each copy in Fig. 5.

From Fig. 5, we can see that the subjects cannot tell per-
ceptual differences among most test samples. This fact shows
that our scheme can usually provide transparent playback
quality in comparison with the baseline. We can achieve com-
parable playback quality using a scaling factor of trunca-
tion noise no less than 3. Another interesting observation is
that the proposed scheme provides better quality than the
baseline for sample 2 when SF equals 4 or 5. This exam-
ple reveals an important property of our proposed scheme:
it yields improved playback quality compared to the base-
line. We analyze it as follows. In our scheme, the actually
introduced truncation noise is less than the noise estimation,
according to (4.16). The noise estimation is further employed
to allocate additional MQD by the joint noise shaping pro-
cess. Thus the increased MQD will not be filled fully, and
consequently, the proposed scheme has higher residual MQD
than the baseline. This is especially important for those scale
factor bands where the quantization noise exceeds the mask-
ing threshold (initial MQD being zero, as discussed in intro-
duction part of Sect. 5), since it represents less audible noise.

5.3 Increase of file sizes

High compression ratios are an important goal for audio
encoders. As mentioned, our scheme will sacrifice some com-
pression efficiency in exchange for the reduction of the
decoder’s computational workload. In this section, we will
investigate the compression efficiency of our scheme by

comparing the file sizes generated by our work with that
by the baseline AAC encoder.

For the prototype encoder, we used the same encoding
parameters as those presented in 5.2. In particular, scaling
factor of truncation noises was chosen to be 3 and the work-
load reduction ratio was chosen to be 77%. FAAC 0.60 is
chosen to be the baseline encoder with the identical bit rates
and encoding parameters as those used by the conventional
encoder core in the prototype encoder. The file size gener-
ated by our scheme depends on the specified bit rate for the
conventional encoder core. In AAC standard, ten bit rates are
provided, ranging from 64 to 320 Kb/s. As our scheme targets
scenarios of high quality audio entertainment, the require-
ment for the bit rate of the conventional encoder core should
be at least 128 Kb/s. But we added two lower bit rates to
demonstrate the characteristics of the proposed work. Thus
we varied the bit rate of the encoders as 96, 112, 128, 160,
192, 224, 256 and 320 Kb/s. For each level of the bit rates, we
measured the generated file sizes and computed the increase
ratios compared to the baseline, as shown in Fig. 6.

From Fig. 6, we can see that the increase ratios of the com-
pressed file sizes decrease as the bit rate increases. This can be
explained as follows. The initial levels of MQDs increase as
the specified bit rates of the baseline encoder become higher.
The required changes of the quantization step sizes for each
scale factor band become smaller. Consequently, this results
in smaller increase of the bit length of the coded frequency
coefficients. For the bit rate of 128 Kb/s, the average file size
increase ratio is 9.52%. This implies that our scheme only
incurs a modest increase in file sizes. We believe that this
is acceptable for the targeted application scenarios. On the
other hand, the results shown in Fig. 6 also demonstrate the
necessity of our work. Though we have encoded the audio
data in 320 Kb/s, which is the highest bit rate supported by
the AAC standard, there was 4.13% increase in file size. This

96 112 128 160 192 224 256 320
1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

Bit rate (Kb/s)

F
ile

 s
iz

e
in

cr
ea

se
 r

at
io

sample 1
sample 2
sample 3
sample 4
sample 5
sample 6

Fig. 6 Increase ratios of file sizes for various encoding bit rates

123

112 W. Huang, Y. Wang

suggests ASP noise still violates the constraints of MQDs.
This implies that the initial levels of the MQDs provided
by the conventional AAC encoder cannot mask all the ASP
noise and special techniques, like our scheme, are required
to address those ASP noises.

6 Conclusion and future work

We have proposed a novel framework, a joint encoder–
decoder framework (JEDF), which allows the decoder to
reduce workload at the expense of storage without sacri-
ficing playback quality. This is achieved by a joint noise
shaping process. In comparison with existing methods, we
believe that the JEDF concept has identified a new direction
in designing low power multimedia-capable embedded sys-
tems. We have implemented the proposed scheme with the
MPEG AAC codec for proof of concept.

The reduced workload resulting from JEDF should be
exploited by dynamic voltage scaling (DVS) techniques to
save energy and to prolong the battery life. The appropriate
implementation of DVS underlying JEDF is out of the scope
of this paper. However, we can roughly estimate the saved
energy in terms of workload reduction. With DVS, as a first
order of approximation, an application has a cubic relation-
ship between its workload and its energy consumption [20].
We can then estimate the energy saving of JEDF to be more
than 70%, which demonstrates its potential in terms of energy
efficiency.

In our pilot implementation, we have concentrated on the
truncation noise shaping of IFFT in the IMDCT to achieve
the specified workload reduction. As an immediate next step,
we plan to extend the proposed scheme to other parts of the
IMDCT. Furthermore, how to represent the new side informa-
tion such as the truncation positions of SOPOT coefficients in
an efficient way remains to be addressed by the future work.

Acknowledgements We thank the anonymous reviewers for their crit-
ical comments, which have helped to improve the quality of this paper.
The work carried out was funded by the Singaporean Ministry of Edu-
cation under the research grant R-252-000-236-112.

References

1. Argenti, F., Del Taglia, F., Del Re, E.: Audio decoding with fre-
quency and complexity scalability. IEE Proc. Vis. Image Signal
Process. 149(3), 152–158 (2002)

2. Benini, L., Micheli, G.D.: System-level power optimazation:
techniques and tools. ACM Trans. Des. Autom. Electron.
Syst. 5(2), 115–192 (2000)

3. Chan, S.C., Yiu, P.M.: An efficient multiplierless approxima-
tion of the fast fourier transform using Sum-of-Powers-of-Two
(SOPOT) coefficients. IEEE Signal Process. Lett. 9(PART 10),
322–325 (2002)

4. Ghurumuruhan, G., Prabhu, K.M.M.: Fixed-point fast hartley
transform error analysis. Signal Process. 84(8), 1307–1321 (2004)

5. Huang, W., Wang, Y., Chakraborty, S.: Power-Aware bandwidth
and stereo-image scalable audio decoding. In: ACM Multimedia
Conference. Singapore, pp. 291–294 (2005)

6. Hu, Z., Wan, H.: A novel generic fast fourier transform prun-
ing technique and complexity analysis. IEEE Trans. Signal Pro-
cess. 53(1), 274–282 (2005)

7. ISO/IEC (2000) MPEG1 11172-3: Audio Coding
8. ISO/IEC (2006) MPEG2 13818-7: Advanced Audio Coding
9. James, D.V.: Quantization errors in the fast fourier trans-

form. IEEE Trans. Acoust. Speech Signal Process. ASSP-23(3),
277–283 (1975)

10. Liu, C.M., Lee, W.C., Chien, C.T.: Bit allocation for advanced audio
coding using bandwidth-proportional noise-shaping criterion. In:
International Conference on Digital Audio Effects (DAFX).
London, pp. 233–237 (2003)

11. Liang, J., Tran, T.D.: Fast multiplierless approximations of the DCT
with the lifting scheme. IEEE Trans. Signal Process. 49(12), 3032–
3044 (2001)

12. Markel, J.D.: FFT pruning. IEEE Trans. Audio Electroacoustics
AU-19, 305–311 (1971)

13. McMillan, L., Lee, W.: A forward-mapping realization of the
inverse discrete cosine transform. In: IEEE Data Compression Con-
ference. Snowbird, Utah, USA, pp. 219–228 (1992)

14. Mesarina, M., Turner, Y.: Reduced energy decoding of mpeg
streams. Multimed. Syst. 9(2), 202–213 (2003)

15. Oppenheim, A., Nawab, H., Verghese, G., Womell, G.: Algorithms
for signal processing. In: Rapid Prototyping of Application Spe-
cific Signal Processors Conference (RASSP). Arlington, Virginia,
USA, pp. 146–153 (1994)

16. Oppenheim, A.V., Weinstein, C.J.: Effects of finite register
length in digital filtering and the fast fourier transform. Proc.
IEEE 60(8), 957–976 (1972)

17. http://www.audiocoding.com
18. Simplescalar/Arm: http://www.simplescalar.com/v4test.html
19. Tajana, S., Micheli, G.D., Benini, L., Mat, H.: Source code optimi-

zation and profiling of energy consumption in embedded systems.
In: International Symposium on Systems Synthesis. Madrid, Spain,
pp. 193–199 (2000)

20. Trevor, M.: Power: a first-class architectural design constraint.
IEEE Comput. 34(4), 52–58 (2001)

21. Wang, Z.: Pruning the fast discrete cosine transform. IEEE Trans.
Commun. 39(5), 640–643 (1991)

22. Zheng, F., Garg, N., Sobti, S., Zhang, C., Joseph, R., Krishnamurty,
A., Wang, R.: Considering the energy consumption of mobile
storage alternatives. In: IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems. Orlando, USA, pp. 36–45 (2003)

123

http://www.audiocoding.com
http://www.simplescalar.com/v4test.html

	A joint encoder--decoder framework for supporting energy efficient audio decoding
	Abstract
	1 Introduction
	2 Related works
	2.1 Noise-shaping techniques in AAC
	2.2 Computation efficient techniques for transforms

	3 Overview of the proposed work
	4 Joint ASP and quantization noise shaping
	4.1 Truncation noise shaping of SOPOT coefficients
	4.2 Noise allocation over SOPOT coefficient blocks
	4.3 The workload estimation module

	5 Experimental results
	5.1 IFFT workload reduction
	5.2 Subjective evaluation
	5.3 Increase of file sizes

	6 Conclusion and future work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

