
Watermarking Video Clips with Workload Information for DVS

Yicheng Huang Samarjit Chakraborty Ye Wang
Department of Computer Science, National University of Singapore

E-mail: {huangyic, samarjit, wangye}@comp.nus.edu.sg

Abstract

We present a lightweight scheme for watermarking or
annotating video clips with information describing the
workload that would be incurred while decoding the clip.
This information can be used at run time to scale the oper-
ating voltage/frequency of the processor on which the video
clip is to be decoded. Our main contribution is a fast,
low-cost bitstream analysis technique for estimating the de-
coding workload of a video clip. Using this technique the
workload information can be inserted into a clip while it is
being downloaded onto a battery-powered portable device
from a desktop computer or a server, for later playback. In
contrast to control-theoretic feedback techniques that have
been traditionally used for predicting video decoding work-
load at runtime for dynamic voltage/frequency scaling, we
show that our scheme performs better in terms of energy
savings and has significantly lower buffer requirements.

1 Introduction
Energy efficiency is today one of the most critical issues

in the design of battery-powered portable devices such as
mobile phones, PDAs and audio/video players. The pre-
dominant workload running on most of these devices are
now generated by multimedia processing applications (e.g.
audio/video decoders). This has resulted in a considerable
interest in power management schemes for portable devices
running multimedia applications [2, 3, 4, 9, 10].

In this paper we propose a new approach for dynamic
voltage scaling (DVS) in the context of multimedia appli-
cations. In what follows, we will only be concerned with
MPEG-2 video decoding. However, the proposed scheme
is very general and can be applied to both, other types of
video, as well as audio processing applications. The scheme
relies on a lightweight offline bitstream analysis of a video
clip to predict the workload that will be generated while
decoding the clip. Based on this analysis, the video clip
is watermarked with the predicted workload information.
Such watermarking can either consist of metadata informa-
tion being inserted into the video clip or such information
being saved as a separate file. At runtime, the decoder reads
this metadata information and controls (or scales) the volt-
age and frequency of the processor. The metadata infor-
mation will typically consist of the frequency at which the

Figure 1. Overview of the proposed scheme.

processor needs to be run at any point in time. However,
the metadata might also consist of workload information
(such as processor cycle demands), from which the required
processor frequency is computed at runtime. The amount of
metadata that needs to be inserted depends on the granular-
ity, or how often the frequency of the processor needs to be
changed. If the amount of metadata allowed is large, then
potentially higher amounts of energy can be saved.

Figure 1 illustrates the key idea behind our scheme. It
shows a setup where a desktop computer or a multimedia
server stores video clips. When such clips are being down-
loaded into a portable device, a lightweight bitstream analy-
sis scheme runs on the desktop computer and watermarks
the video clip with workload information. The watermarked
video clips are then stored in the portable device. At run-
time, the workload information is read out and used for dy-
namic voltage and frequency scaling. It may be noted here
that downloading audio/video clips from a desktop into a
portable device is currently the most common use scenario.
The other possible scenario where such clips are directly
downloaded into the portable device over the network is
still fairly uncommon and many portable media players cur-
rently don’t even support network interfaces; however that
might change over the next few years.

The key point to note here is that all the previously
known techniques predict at runtime the processor fre-
quency f with which a segment of the video clip s needs to
be decoded without looking into s. In contrast to such tech-
niques, we perform an offline analysis of the compressed
bitstream corresponding to s and insert the metadata f be-
fore the start of s. The runtime system simply reads f and
sets the processor frequency to this value. Also, note that
the metadata information need not be equally spaced out
within the video clip. If the computational workload of a
clip is highly variable and irregular, then this might require

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.103

716

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.103

712

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.103

712

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.103

712

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.103

712

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.103

712

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.103

712

Authorized licensed use limited to: National University of Singapore. Downloaded on June 8, 2009 at 00:17 from IEEE Xplore. Restrictions apply.

more metadata. Whereas certain portions of the clip might
not exhibit any variation, in which case it might suffice to
run the processor at a constant frequency (and hence only
this constant frequency value needs to be inserted once).
The inserted metadata information might consist of fre-
quency as well as voltage values, depending on the type of
the underlying processor. Again, in contrast to this, many
current approaches attempt to scale the processor frequency
at regular intervals (e.g. at all video frame boundaries).
We show that our scheme leads to energy savings that are
comparable and often better than those achieved by known
DVS schemes based on runtime (control-theoretic) predic-
tion techniques. More importantly, the buffer requirement
in our scheme is significantly smaller.

Main Challenge: The main challenge in implementing
the proposed scheme lies in the metadata computation
process. Clearly, the exact values of the metadata inserted
will depend on the architecture of the processor in the
portable device (e.g. its instruction set architecture, volt-
age/frequency range and the steps in which they can be
changed) and also on the decoder application running on
this processor. The metadata computation task running on
the desktop is aware of the architecture of the portable de-
vice. However, the generated metadata is transparent to the
user; it only resides inside the portable device.

One possibility is to insert this metadata information di-
rectly during the encoding process. However, this would
assume that the details of the decoder and also the proces-
sor on which the decoder would run are already known at
the time of encoding. It would also amount to generating
video clips which can only be played on certain devices or
on devices manufactured by the same company, which are
all based on the same or on similar processor architectures.
Although this is a feasible option (e.g. the Windows Media
format is only targeted towards Windows platforms), it is
clearly very restrictive.

We therefore propose a scheme where the metadata in-
formation is directly inserted into a video clip based on the
architecture of the portable device. Towards this, we as-
sume the following scenario. To download a video file into
such a device, it would be connected to a desktop computer
on which an application program specialized for this device
would run. This program would perform a bitstream analy-
sis of the video file being downloaded, calculate the appro-
priate metadata information and insert this information into
the file. Since the program is specialized for this device, the
metadata computed is specific to its processor architecture
and also to the decoder application running on the device.
Each such device would therefore be shipped with an appli-
cation program (that would run on the desktop computer)
that is specific to the device. This scheme has two main ad-
vantages: (i) It is flexible, i.e. the portable device can play
video files encoded in standard formats such as MPEG-2

and the metadata-inserted files are not visible to the exter-
nal world; they only exist inside the portable device. (ii)
The bitstream analysis process, which might be involved,
can run on a desktop computer and not on the portable de-
vice, which would typically be resource constrained.

Metadata Computation: The only remaining question
that needs to be answered is, given a video file, how is the
metadata or the watermark information exactly computed?
What follows in this paper will mostly be concerned with
answering this question.

The most straightforward answer to this question is, sim-
ulate the decoding of the given video file on a software
model of the processor’s architecture. This would result in
a trace of the file’s processor cycle requirements, e.g. the
number of processor cycles required to decode each mac-
roblock of the video file. From this trace, the clock fre-
quency with which the processor should be run while de-
coding any segment of the file can be computed. The com-
puted frequencies will constitute the metadata information
to be inserted into the video file. Towards this, it would
be possible to use processor instruction set simulators like
SimpleScalar [1] to compute the trace of processor cycle re-
quirements of a video file. However, a cycle-accurate simu-
lation of the execution of a processor is extremely expensive
in terms of the simulation time involved. For example, sim-
ulating the decoding of a 30 seconds long MPEG-2 video
clip requires more than half an hour using SimpleScalar.
Hence, this scheme is not feasible if the metadata computa-
tion needs to be done while downloading a video file from
a desktop computer into a portable device, without any per-
ceptible delay.

We therefore propose an alternative lightweight scheme
where we do not simulate the execution/decoding of the
video clip. Instead we perform a bitstream analysis to pre-
dict the processor cycle requirements of each macroblock.
The scheme has to be lightweight since it has to be fast
enough and not delay the downloading process from the
desktop computer to the portable device. We would again
like to point out that in contrast to this, runtime prediction
schemes predict the processor cycle requirement of a video
segment without looking into the segment. Our scheme al-
lows for the bitstream analysis because it is done offline (i.e.
not at runtime) while the video file is being downloaded into
the device. The prediction scheme we propose is based on
classifying the video decoding tasks into two groups—those
that are CPU-bound, such as motion compensation, and oth-
ers which are memory-bound such as those responsible for
dithering. The processor cycle requirements of memory-
bound tasks are almost constant and are hence easy to pre-
dict. Hence, we shall mostly be concerned with predicting
the processor cycle requirements of CPU-bound tasks. As
already mentioned, in this paper we will use MPEG-2 for
the sake of illustration.

717713713713713713713

Authorized licensed use limited to: National University of Singapore. Downloaded on June 8, 2009 at 00:17 from IEEE Xplore. Restrictions apply.

Paper Organization: The rest of this paper is organized
as follows. In the next section we present our analysis
scheme for MPEG-2. This consists of estimating the work-
load incurred by the different subtasks of an MPEG-2 de-
coder. In Section 3 we show how our approach compares
with known DVS schemes that use control-theoretic tech-
niques for online/runtime workload prediction. Finally, we
conclude in Section 4 by outlining some directions for fu-
ture work.

2 MPEG-2 Bitstream Analysis

An MPEG-2 video sequence is made up of a number
of frames, where each frame contains several slices. Each
slice in turn consists of a number of macroblocks (MBs).
Decoding an MPEG-2 video can therefore be considered
as decoding a sequence of MBs. This involves executing
the following tasks for each MB: variable length decoding
(VLD), inverse discrete cosine transformation (IDCT)
and motion compensation (MC). Other tasks, such as
inverse quantization (IQ) involves a negligible amount of
computational workload and hence we ignore them for the
purpose of our analysis. The analysis we present here can
be used for voltage/frequency scaling at the MB granularity
(clearly, the same analysis can be used at the slice or frame
granularity as well). Given a sequence of MBs, in this
section we describe how to predict the processor cycle
requirements corresponding to the tasks VLD, IDCT and
MC for each of these MBs. We compare our predicted
results with those obtained from simulating the execution
of these tasks using the SimpleScalar [1] instruction set
simulator (with the Sim-Profile configuration), with the
same sequence of MBs as input. Since we envisage the
decoder to run on a general-purpose processor (such as
those found on a PDA), we choose our processor to be
a RISC processor (similar to a MIPS3000) without any
MPEG-specific instructions. We use Test Model 5 (TM5)
[7] as our MPEG-2 decoder application. Although not
an optimized decoder, it is acceptable for our analysis
since all MPEG-2 decoders have a similar code structure.
We experimented with five different commonly used
benchmark video clips, encoded with a 4M/s bitrate: (i)
Flwr (has moderate motion), (ii) Tennis (still background
with moving foreground), (iii) Susi (very low motion), (iv)
V700 (still image) and (v) Football (very fast motion).

The Variable Length Decoding Task: The IDCT co-
efficients in MPEG-2 are encoded using variable length
encoding, which involves Run-Length Coding followed by
Huffman Coding. Some run-length codes are coded using
longer Huffman codes compared to the others. The number
of processor cycles required for the Huffman decoding de-
pends on the length of the Huffman codes used. Therefore,
the number of processor cycles required by the VLD task

for any input MB is expected to depend on the number of
non-zero IDCT coefficients in it. Our simulations confirm
that this is indeed the case and the relationship is a linear
one. Hence, we use the following function as an estimate
of the number of processor cycles required by the VLD
task for any MB: nvld = a × ncoeff + b. Here, nvld is
the estimated number of processor cycles, ncoeff is the
number of non-zero coefficients in the MB and a and b
are constants which depend on the processor architecture
and the VLD code. From our experiments we determined
the values of a and b to be 140 and 3000 respectively for
our setup. For the Flwr video we noted that for around
36% of the MBs, the processor cycle requirements were
predicted with an error of less than 2%. For all MBs,
the prediction error was less than 10% (in the range of
−1000 to +2000 processor cycles). Other clips also had
similar error distributions. It should be noted that the
values of a and b in this case capture the characteristics of
one specific architecture. Recall that our watermarking is
architecture-specific. For a different processor architecture
and decoder implementation, these values will change and
they are hardcoded in the metadata insertion task running
on the desktop (see Figure 1).

The Motion Compensation Task: MBs constituting an
MPEG-2 clip may be classified into three categories: those
involving no motion compensation (I-type), those involving
only forward motion compensation (P-type) and those in-
volving both forward and backward motion compensation
(B-type). Therefore, the MC task for P-type MBs incur
about half the number of processor cycles compared to B-
type MBs and I-type MBs do not incur any computational
workload.

We used SimpleScalar simulations to obtain the proces-
sor cycle distribution for the MC task for each of our five
MPEG-2 video clips. As expected, with the exception of
the V700 clip (still image), the number of processor cycles
for all of these clips were distributed into three distinct clus-
ters. The first cluster (located around 0 processor cycles)
correspond to the I-type MBs, the second (around 3000 -
7000 cycles) correspond to the P-type MBs, and finally the
third cluster (around 9000 - 17000 cycles) correspond to the
B-type MBs. In the V700 clip, almost all the MBs use the
same type of motion compensation, thereby resulting in a
single cluster.

Since the processor cycle distribution within each clus-
ter is reasonably large, a prediction solely based on MB
type will not be accurate enough. The variability within
each cluster results from factors like whether the MC task
is frame- or field-based and whether the motion vectors are
half- or one-pixel accurate. We account for these as follows.

The code for the MC task may be considered to be com-
posed of a number of subroutines, each of which is essen-
tially the same function, but called with different parame-

718714714714714714714

Authorized licensed use limited to: National University of Singapore. Downloaded on June 8, 2009 at 00:17 from IEEE Xplore. Restrictions apply.

ters. Let us denote this function by F . The number of
processor cycles required to execute F depends only on its
input parameters. Depending on the input MB, these para-
meters include whether (i) Y1 component’s x-dimension is
HALF-PIXEL, (ii) Y component’s y-dimension is HALF-
PIXEL, (iii) U or V component’s x-dimension is HALF-
PIXEL, (iv) U or V component’s y-dimension is HALF-
PIXEL, (v) forward or backward motion compensation is
required, and (vi) the motion compensation window size is
16 × 8 or 16 × 16. Different MBs call F different number
of times and with different values of the above boolean pa-
rameters. For example, a P-type non-progressively coded
MB, which uses frame-based motion compensation, will
call F twice. Both of these calls are with the same list of
parameters (0, 0, 0, 0, 1, 16 × 8). Similarly, a B-type, pro-
gressively coded MB, which uses field-based motion com-
pensation, will also call F twice, but with the parameters
(1, 1, 1, 1, 1, 16× 16) and (1, 1, 1, 1, 0, 16× 16).

Based on this observation, we predict the processor
cycle requirement of the MC task by first simulating the
execution of F with all possible input parameter values.
Since there are six boolean parameters, they result in a total
of 26 = 64 possible input values. The processor cycle re-
quirement of F corresponding to each of these 64 possible
inputs is stored in a table. Now, given a sequence of MBs,
by parsing each MB, we determine the number of times F
is called and with what input parameter values. Using these
and our precomputed table of cycle requirements we are
able to predict the cycle requirements for each of the MBs.
For approximately 40% of the MBs the error incurred is
less than 2%. Further, none of the MBs incur an error of
more than 4%. Again, it should be noted that the contents
of the precomputed table is architecture-specific.

The Inverse Discrete Cosine Transform Task: Usually
each MB in MPEG-2 contains four Y blocks, one U block
and one V block. Each of these blocks are of 8 × 8 pixels
size. Hence, the input data size to the IDCT task is the
same for all MBs, which results in the same computational
workload being incurred for all MBs. However, an opti-
mized implementation of the IDCT task takes into account
that several IDCT coefficients might be zero and exploits
this fact to save some computation. In spite of this, it
is a reasonably good approximation to assume that the
number of processor cycles incurred by the IDCT task for
any MB is a constant, as is confirmed by our experimental
results. We selected 2 × 104 + 4000 as the processor cycle
requirement for any macroblock (where 4000 cycles is an
architecture-specific “safety margin”). With this prediction,
around 61% of the MBs incur an error of less than 2% and
91% of the MBs incur an error of less than 10%.

1Each frame in MPEG-2 is represented in the YUV color space.
See the ISO MPEG-2 standard for details.

Total Cycle Requirements: The total number of proces-
sor cycles required to decode a MB may be predicted by
summing up the predicted values for the VLD, MC and
IDCT tasks and adding a safety margin of 500 cycles (this
value may again be obtained from simulations and would
depend on the processor architecture and the decoder code).

3 Experimental Results

To evaluate our scheme, we conducted several experi-
ments using an MPEG-2 decoder application. For estimat-
ing the power consumption, we adopted the model from
[5]: P ∝

∑
(vdd,i)2fi, where vdd,i and fi are voltage

and frequency values set by the scheduler at ith adapta-
tion point. We assumed that f ∝ vdd,i. We also assumed
that the processor can be scaled continuously. The experi-
ments were repeated on five different video sequences that
we listed at the beginning of Section 2. Further, we used
three different adaptation intervals: every one macroblock
of the bitstream, every ten macroblocks and every twenty
macroblocks.

We compared our energy savings with those achieved by
the DVS scheme published in Wu et al. [8]. Wu et al. uses
a PID controller which tracks changes in the buffer fill level
(at the input of the processor) and accordingly regulates
the processor’s speed and voltage. The reason we selected
this scheme is because (i) it can handle the stream bursti-
ness and the data-dependent variability in the decoder’s
execution demand; (ii) it is suitable for buffer-constrained
architectures; and (iii) it also uses fixed adaptation intervals
as we do in our scheme. Furthermore, to the best of our
knowledge, the scheme of Wu et al. represents on of the
most advanced DVS techniques recently published.

Comparative results: Here, we would like to point out the
contrasts between our approach and that of Wu et al. We
predict the workload incurred by the decoder in an offline
fashion by analyzing the video clips. Wu et al. on the other
hand uses control theoretic techniques to predict the future
workload in an online fashion. As we show in this sec-
tion, the energy savings obtained by both these schemes are
similar, with our scheme performing marginally better for
most clips. However, the main difference is in terms of the
quality of the decoded video, especially in cases where the
playout buffer is small. Using the PID controller to scale the
processor frequency results in many decoded macroblocks
to miss their deadlines (i.e. the output display device is oc-
casionally unable to read a decoded macroblock from the
playout buffer). This problem is especially acute when the
playout buffer size is small (≤ 1.5 kB). On the other hand,
our scheme consistently performs well even for very small
buffer sizes and achieves better energy savings. Lastly, as
already mentioned, because our scheme relies on an offline

719715715715715715715

Authorized licensed use limited to: National University of Singapore. Downloaded on June 8, 2009 at 00:17 from IEEE Xplore. Restrictions apply.

900 920 940 960 980 1000
900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900
PID
Our scheme

900 920 940 960 980 1000
700

800

900

1000

1100

1200

1300

1400

1500

1600

1700
PID
Our scheme

900 920 940 960 980 1000
900

1000

1100

1200

1300

1400

1500

1600

1700

1800
PID
Our scheme

(a1) (a2) (a3)

900 920 940 960 980 1000
950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450
PID
Our scheme

900 920 940 960 980 1000
1050

1100

1150

1200

1250

1300

1350

1400

1450
PID
Our scheme

900 920 940 960 980 1000
1050

1100

1150

1200

1250

1300

1350

1400
PID
Our scheme

(b1) (b2) (b3)

900 920 940 960 980 1000
1050

1100

1150

1200

1250

1300

1350

1400

1450
PID
Our scheme

900 920 940 960 980 1000
1050

1100

1150

1200

1250

1300

1350

1400

1450
PID
Our scheme

900 920 940 960 980 1000
1050

1100

1150

1200

1250

1300

1350

1400

1450
PID
Our scheme

(c1) (c2) (c3)

Figure 2. Excerpts from processor frequency schedules generated by our scheme and the PID controller. The horizontal axis
represents the adaptation points (adaptation interval specified in terms of no. of macroblocks) and the vertical axis represents the
processor frequency (in Hz). (a), (b) and (c) represent the video clips Flwr, Susi and Football respectively. Indices 1 - 3
represent the adaptation intervals of 1, 10 and 20 macroblocks respectively.

workload prediction, it incurs a smaller runtime overhead
compared to online schemes.

Figure 2 shows how the processor’s frequency is scaled
using the PID controller and using our scheme. Each row
in this figure represents a specific video clip. The first row
shows the results obtained with the clip Flwr. Recall that
this clip contains moderate amounts of motion. The sec-
ond row shows the results for the clip Susi, which has
very low motion. Finally, the third row shows the results
for Football which has very high motion. All the clips
have a frame resolution of 704 × 480 pixels and are dis-
played at the rate of 30 frames/second. Each column in this
figure shows the results for a specific adaptation interval.
Column 1 shows the results when the adaption interval was
set to one macroblock, i.e. the processor’s voltage and fre-

quency are changed after the decoding of each macroblock.
Column 2 shows the results for an adaptation interval of 10
macroblocks and finally Column 3 shows the results for an
adaptation interval of 20 macroblocks. While an adapta-
tion interval of one macroblock might incur too much of an
overhead, we believe that adaptation intervals of 10 and 20
macroblocks are quite realistic.

The setup we used consists of a playout buffer which
stores the decoded macroblocks. This buffer is read out
by output device at a constant frame rate. For the PID
controller, the expected buffer fill level was always set to
half the size of this playout buffer. The baseline case—
for comparing the energy savings obtained by both the
schemes—was set as a constant processor frequency. This
frequency was computed assuming that all macroblocks

720716716716716716716

Authorized licensed use limited to: National University of Singapore. Downloaded on June 8, 2009 at 00:17 from IEEE Xplore. Restrictions apply.

Buffer Watermarking PID
size (kB)

0.5 0.1987 42.8906
1.0 0.1852 26.8384
1.5 0.1768 10.3906
2.0 0.1700 2.5253
5.0 0.1077 0.0101

Table 1. Percentage of macroblocks missing their dead-
lines for different playout buffer sizes.

have the worst-case execution requirement and an output
rate of 30 frames/sec will have to be sustained. With this
base case, and a one-macroblock adaptation interval, both
our scheme and the PID controller-based scheme achieved
energy savings in the range of 89.1% and 96.3%. For all the
five clips that we experimented with (each having a varying
degree of motion), our scheme obtained larger energy sav-
ings except for the V700 clip where our scheme obtained a
savings of 94.6% and the PID controller-based scheme ob-
tained a savings of 96.3%.

When the adaptation interval was set to 10 macroblocks,
the energy savings for both the schemes were in the range
of 83% and 96.1%. Again, for all the clips, our scheme
performed better than the PID controller except in the case
of the V700 clip. Finally, with an adaptation interval of 20
macroblocks, the energy savings were again in the range of
83% and 96.3% with our scheme performing worse than the
PID controller for the V700 clip.

Our results show that both the schemes are fairly robust
in terms of the adaptation interval and are hence practical
to implement. However, the buffer requirements for the
two schemes are quite different. For the one macroblock
adaptation interval, the buffer requirement of our scheme
was between 19% and 50% of that of the PID controller-
based scheme (when the buffer size was not constrained).
In particular, for the V700 clip, the buffer requirement of
our scheme was only 19% of what was required by the PID
controller scheme. For adaptation intervals of 10 and 20
macroblocks, the buffer requirements of our scheme varied
between 22% and 88% of that required by the PID con-
troller.

When the buffer size was restricted, the PID controller-
based scheme suffered from severe deterioration in the out-
put video quality because of several macroblocks missing
their deadlines. Table 1 lists the percentage of macroblocks
missing their deadlines for different playout buffer sizes.
Note that for relatively small buffer sizes, more than 20%
of the macroblocks can miss their deadlines when the PID
controller-based scheme is used. Our proposed scheme, on
the other hand, consistently performs well even for small
buffers. However, with relative large buffers, almost all the
macroblocks meet their deadlines with the PID controller.

In summary, the energy savings achieved by both the
schemes are comparable. However, the buffer requirements

for the PID controller scheme, on an average, was almost
double of what was required by our scheme. Hence, our
scheme is particularly interesting given the current inter-
est in DVS schemes for buffer-constrained architectures [6].
Further, as mentioned before, our scheme does not involve
any runtime overhead, whereas online workload prediction
schemes such as the PID controller often incurs a consider-
able runtime overhead and also requires constant monitor-
ing of the buffer fill level.

4 Concluding Remarks
In this paper we presented a novel scheme for water-

marking video clips with workload information, which can
be extracted at runtime for dynamic voltage/frequency scal-
ing. The inserted metadata is not visible to the external
world, in contrast to previous proposals for the video en-
coder to generate the workload information, which we be-
lieve is less flexible because it restricts the platforms on
which the resulting video clips can be decoded. Our main
contribution is a fast bitstream analysis technique to predict
the computational workload involved in decoding a video
clip. We believe that the basic scheme that we presented in
this paper can be further refined to more accurately estimate
the decoding workload. In particular, the cache/memory or-
ganization of the target device (e.g. PDA) may be taken
into account in conjunction with the bitstream analysis tech-
nique that we presented here.

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An in-
frastructure for computer system modeling. IEEE Computer,
35(2):59–67, 2002.

[2] M. Buss, T. Givargis, and N. Dutt. Exploring efficient oper-
ating points for voltage scaled embedded processor cores. In
Real-Time Systems Symposium (RTSS), 2003.

[3] H. V. A. et al. Energy-aware system design for wireless mul-
timedia. In DATE, 2004.

[4] S. M. et al. Integrated power management for video stream-
ing to mobile handheld devices. In ACM Multimedia (MM),
2003.

[5] Y.-H. Lu, L. Benini, and G. D. Micheli. Dynamic frequency
scaling with buffer insertation for mixed workloads. IEEE
Trans. on CAD of Integrated Circuits andd System, 2002.

[6] A. Maxiaguine, S. Chakraborty, and L. Thiele:. DVS for
buffer-constrained architectures with predictable QoS-energy
tradeoffs. In CODES+ISSS, 2005.

[7] http://www.tns.lcs.mit.edu/manuals/mpeg2/.
[8] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal on-

line methods for voltage/frequency control in multiple clock
domain microprocessors. ASPLOS, 2004.

[9] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. In ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[10] W. Yuan and K. Nahrstedt. Practical voltage scaling for mo-
bile multimedia devices. In ACM Multimedia (MM), 2004.

721717717717717717717

Authorized licensed use limited to: National University of Singapore. Downloaded on June 8, 2009 at 00:17 from IEEE Xplore. Restrictions apply.

