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ABSTRACT

Automatic music transcription, in spite of decades of re-
search, remains a challenging research problem. The tra-
ditional audio-only approach has yet to achieve a satisfac-
tory performance for any computer-aided pedagogical sys-
tem. Inspired by the high correlation between violin playing
techniques (fingering, bowing) and the played acoustic notes,
this paper presents a first attempt in visual analysis of violin
fingering to compensate for the difficulties in audio-only mu-
sic transcription. This is achieved by a robust multiple finger
tracking algorithm and a string detection method that ex-
tract press, release, and fingertip position from the fingering
video and automatically translate the fingering information
into the played acoustic note, i.e., onset, offset, and pitches.
Experimental results reveal high correctness in multiple fin-
ger tracking and string detection, thus paving the way for
an improved audio-visual violin transcription system.

Categories and Subject Descriptors

H.5.5 [Sound and Music Computing]: Methodologies
and techniques, Systems; 1.2.10 [Vision and Scene Un-
derstanding]: Motion, Shape, Video analysis; 1.4.8 [Scene
Analysis|: Motion, Tracking

General Terms

Algorithms, Design, Experimentation, Human Factors

Keywords

Music transcription, multiple finger tracking, automatic note
inference, violin fingering chart

1. INTRODUCTION

In recent years, computer-aided pedagogical systems have
been developing rapidly to replace or significantly reduce
human efforts in various education scenarios [1, 2]. For mu-
sic education, an audio-only music transcription system has
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difficulties in accurately detecting onset, offset and pitches
for every note, which is the basic task of music transcription.
In particular, for pitched non-percussive (PNP) sounds such
as from the violin, the onset and the offset of a note often
change gradually over a prolonged period of time. Therefore,
it is difficult to pinpoint the exact time instances at which
the onset and the offset occur [3] (Figure 3). Moreover,
when two notes of the same pitch are played consecutively,
the change from the offset of the first note to the onset of
the second note is very subtle and so, it is very difficult to
detect the onset/offset using audio signal only. Multi-pitch
estimation also remains a research challenge despite some
recent progress [4].

Inspired by the high correlation between violin playing
techniques (fingering, bowing) and the played acoustic notes,
visual information of fingering and bowing can be used to
complement audio-only methods to enhance transcription
performance. We tackle the difficulty for onset/offset de-
tection from the gradual change of audio signal by extract-
ing finger press and release events from fingering video, and
solve the problem of onset/offset detection of consecutive
notes with the same pitch by tracking bowing. Multi-pitch
estimation can also be enhanced by extracting fingertip posi-
tions from the fingering video. Besides improving transcrip-
tion performance, the audio-visual approach can also pro-
vide useful visual information, such as fingering and bowing
trajectories and playing gestures, to the player as learning
feedback. Due to space limitation, in this paper, we focus on
the automatic visual analysis of violin fingering video for im-
proved audio-visual violin transcription. To our knowledge,
this is also the first attempt to use bare finger tracking for
music transcription.

This paper presents a method for inferring the elements
of the played acoustic notes (onset, offset, and pitches) by
robust multiple finger tracking, string detection and physics-
based automatic note inference (Section 3).

Experimental results (Section 4) reveal high correctness
in our method for multiple finger tracking and string de-
tection, thus paving the way for an improved audio-visual
violin transcription system.

2. RELATED WORK

Several methods have been proposed to solve the auto-
matic finger tracking problem, such as [5, 6, 7]. In [5], fin-
gertips are tracked in bare hand video with flat palm, which
is not applicable to the violin fingering analysis as the fin-
gers are always bent while playing a violin. An articulated
hand tracking method is proposed in [6] with the condition



that the palm and the fingers are not occluded. However,
this is clearly not the case for violin fingering since the palm
is always occluded by the neck of the violin.

The work that is most similar to ours is [7] on guitarist
finger tracking. In [7], Burns and Wanderley used Hough cir-
cle transform to detect fingertips based on the clear fingertip
edges in the video. Our experiments show that this method
will fail if the finger moves away from the finger board and
fingertip edges cannot be easily detected, which happens
frequently in violin video. Furthermore, this method is not
robust against the noise near the fingertips.

In summary, none of the previous work is suitable for vi-
olin finger tracking either because of their constraints to
specific application scenarios or their poor performance. In
this paper, we propose a robust approach to multiple finger
tracking in violin fingering video based on Condensation al-
gorithm [8] by employing joint finger model dynamics and
Gaussian skin color model.

3. VISUAL ANALYSIS OF FINGERING

Visual analysis of fingering is achieved by tracking the
four fingers of the violinist’s left hand and detecting the
four strings (string E, A, D and G) of the violin to obtain
the fingering events from each frame of the fingering video.
A bird’s eye view of the violin finger board (Figure 4) is se-
lected to capture the necessary information for visual anal-
ysis of violin fingering. The visual analysis consists of five
stages which are discussed in the following sections.

3.1 Motion Compensation

Global motion compensation technique is applied to re-
duce the global translation of the fingers and the violin.
This decreases the complexity of multiple finger tracking
and string detection. By referring to the first frame, motion
vectors of subsequent frames are computed by finding the
best match between each frame and the first frame. Then,
each frame is translated in the opposite direction of the mo-
tion vector to remove global translation.

3.2 Multiple Finger Tracking

The four fingers of the violinist’s left hand are tracked
simultaneously using Condensation algorithm [8] in which
joint finger model dynamics and Gaussian skin color model
are employed.

3.2.1 Joint Finger Model Dynamics

Each finger is modeled by a closed B-spline curve with
eight control points, g1 to gs (Figure 1), which form a feature
vector @ = (Zqy, .., Tqs, Yq1s - Ygs ) that captures the artic-
ulated finger contour. A finger shape space is constructed
separately for each finger as follows. N training samples,
Q1, ..., QnN, consecutive in time are manually collected. The
difference vector between @Q; and @1, for each i, is computed.
Principal Components Analysis (PCA) is applied to the dif-
ference vectors to obtain the shape space W that transforms
the difference vector to a shape vector, Fy [9]:

Qr— Q1 =WFj . (1)

The joint model dynamics of the four fingers are formu-
lated as a second-order auto-regressive process and learned
from the shape vectors Fji, j = 1,...,4, and k = 2,..., N,

Figure 1: The finger model. The finger contour is
modeled by a closed B-spline curve with eight con-
trol points.

where j is the finger number:

X: = A1 X4 1+ A X2 + Bows
P(X¢[ X1, X¢—2) o @
exp {—3[|B7H(X; — A1X; 1 — A2 X))

where X; = [ FE FL FL FL }T The joint finger model
dynamics include inter-finger constraints, such as finger or-
der, no overlap between two fingers, etc., which are impor-
tant for correct tracking of the finger contours. As long as
there are enough training samples, Eq. 2 will be able to accu-
rately model the articulated finger contour dynamics during
violin playing.

3.2.2 Finger Measurement Density

The finger measurement density P(Z|X) is estimated as
follows. First, Canny edge detector is applied to extract
edges from the input image. Edge pixels with colors similar
to a pre-computed Gaussian skin color model are identified.
The directions of the edges are also computed.

Once the set Z of edges is computed, given a predicted
shape vector X, the measurement density is computed by
searching along S normals of the predicted contour of each
finger [9] as:

S
P(Z|X) x exp {2}, >~ min(lip: - Zi||,p>} )

where p; and z; are respectively the pixel position on the
predicted contour and the signed edge along the i-th normal,
p is a constant penalty, and o is the standard deviation.

3.2.3 Iterative Estimation

Based on the above joint finger model dynamics and mea-
surement density, Condensation algorithm [8] is applied to
iteratively estimate the current finger contours:

P(X|Ze) o< [[ P(Z5e] X50) P(Xe| Xim1, Xi2) (4)

j=1

where measurement densities of the four fingers are assumed
to be mutually independent.

The contour of each finger in every frame is tracked. For
each frame, the fingertip position, T; = (xg, y§), of each
finger contour is computed as the average position of the
control points g3, g4, g5 of the B-spline curve of the contour.

3.3 String Detection

As there is good contrast between the white strings and
the black finger board, and the strings are straight except



Unit: mm

Figure 2: Violin fingering chart built on the physics
of the violin and the vibrating string.

at the nut and the bridge of the violin, it is relatively easy
to detect the starting point P; = (2%,47) (at the nut) and

ending point P} = (:r?l , yf/) (at the bridge) of each string by
first applying Hough line transform [10] and then searching
for the turning points along the detected line track. Figure
4 illustrates some sample results of string detection.

3.4 Fingering Event Detection

From the above steps, four fingertip positions 7 and four
string positions [P, Pj], j = 1,...,4, are obtained for each
frame. Based on fingertip positions and string positions, the
fingering events, i.e., press, release and fingertip position on
the string (string number and distance from the pressing
point to the nut), are computed as follows. For each Tj,
the string [Pj/, Pj,] with the smallest point-to-line distance
is searched. If the point-to-line distance is smaller than a
threshold s, that means the fingertip is pressing the string
j'. On the other hand, if no string is found with a distance
smaller than §,, that means the fingertip is not pressing any
string. The press event is detected at the current frame if the
fingertip is not pressing any string in the previous frame and
is pressing some string in the current frame. Conversely, the
release event is detected. If a fingertip is pressing a string,
the pressing point distance D; from T} to the nut Pj is
further calculated for this fingertip.

3.5 Automatic Note Inference

After detected, a fingering event can be automatically
translated into a played note. In particular, the press event
corresponds to onset, and the release event corresponds to
offset.

According to the physics of the vibrating string, the vi-
brating frequency f is related to the vibrating length L, the
tension 7" and the linear mass of the string U as follows:

1 T
f:ﬁ\Fﬁ’

As U and T are fixed, L determines the vibrating frequency
during violin playing. For a tuned violin in open string case,
the vibrating frequencies, fo;,j = 1 to 4, of strings E, A,
D and G are 659 Hz (E5), 440 Hz (A4), 394 Hz (D4), and
196 Hz (G3), respectively. The distance from the nut to the
bridge of ordinary full scale violins Lg is about 330 mm [12].

When the violin is played, different pitches are produced
by pressing different points along the strings (Figure 2).
Given the string number j' that is pressed and the distance
D; from the pressing point to the nut, the frequency f; or
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Figure 3: Comparison between audio and video fea-
tures for music transcription.

pitch of the played note can be computed based on Eq. 5 as:

fi= ijL . (6)

Lo — Dy

Figure 4 shows four sample results of the automatic note

inference. In Figure 4(a), the fingers start to press string A

and D to produce the pitch D5 and G#4. The time instance

of this frame corresponds to the onset of the current note
and offset of the previous note.

4. SYSTEM EVALUATION

Multiple finger tracking, string detection, and automatic
note inference are evaluated using the captured violin fin-
gering video with resolution 720x432, frame rate 25 fps, a
total of 5649 frames in 225 seconds, and 504 played notes.

4.1 Evaluation of Multiple finger Tracking

1000 training samples were used to train the joint finger
model dynamics. The multiple finger tracking algorithm
successfully tracked 20876 of all the 22596 (5649x4) finger
contours in 5649 test frames, i.e., a tracking correctness of
92.4%. Some successful test results are shown in Figure 4.

4.2 Evaluation of String Detection

String detection for each string was regarded as successful
when the starting and ending points (the nut and the bridge)
of the string are correctly detected (Figure 4).

In the experiments, 21289 strings of all 22596 (5649x4)
strings in 5649 test frames were correctly detected, i.e., a
correctness of 94.2%. In the failure cases, string E detection
fails most often, with a total of 786 failures, since it is the
thinnest and farthest string in the captured view. The total
numbers of failures of strings A, D and G are 125, 165 and
231, respectively.

4.3 Evaluation of Automatic Note Inference

To justify our argument that difficulty for onset/offset de-
tection from gradual change of audio signal can be tackled
by extracting press and release events from fingering video,
we show a representative case of the gradual change of audio
signal and sudden change of fingertip distance in Figure 3.
As can be seen, around the onset timing, the change dura-
tion of fingertip distance is one third of the gradual change
duration of audio signal. Therefore, release event from video
provides three times higher accuracy at pinpointing the on-
set timing. This observation is valid for offset as well.

Loudness (dB)



Visual Info: Press; (A,81) (D,103)
Inferred Note: Onset/Offset; D5 G4

Visual Info: Press; (A,74) (D,55)
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Figure 4: Sample results of multiple finger tracking, string detection, and automatic note inference.

To evaluate the accuracy of automatic note inference, we
compared the inferred notes with human annotated notes.
If the onset, offset and pitches of an inferred note match
the corresponding elements of the human annotated one, we
considered it as a full-match. If they match in only one or
two elements of the onset, offset and pitches, we considered it
as a partial-match. If no element matches, it was considered
as a mismatch. Among the 504 played notes, there were 75
full-matches, 328 partial-matches, and 101 mismatches, i.e.,
14.9% full-matches and 65.1% partial-matches.

It is worth noting the relatively low accuracy of automatic
note inference compared with the high correctness of mul-
tiple finger tracking and string detection. One important
reason is that in 2-D fingering video, if a fingertip is above
a string but not pressing the string, the algorithm will mis-
judge the fingertip as pressing the string. This drawback
results in additional pitches during automatic note infer-
ence. This shortcoming can be overcome by employing an
additional camera to capture 3-D finger information.

Despite the low accuracy of automatic note inference from
video-only approach, the visual information in full-matches
and partial-matches can be fused with audio-only data. From
preliminary experiments, we found that the visual and au-
dio data are indeed complementary. The results show that
the fusion of audio and visual data improves the system per-
formance compared to the audio-only method. This shows
that visual analysis of violin fingering has great potential
in assisting audio-only music transcription, thus paving the
way for an audio-visual violin transcription system. Due
to space limitation of this paper, details about audio-visual
data fusion will be discussed in other publications.

5. CONCLUSIONS

By exploring the high correlation between the violin play-
ing technique (fingering) and the played acoustic notes, with
the first attempt we investigated the visual analysis of violin
fingering to compensate for the difficulties of audio-only vio-
lin transcription. To achieve this, we proposed a robust mul-
tiple finger tracking algorithm and string detection method
that detect finger events (press, release and fingertip posi-
tions), which are automatically translated into played notes
(onset, offset and pitches) based on the physics of the violin.

Experimental results have shown high correctness of multi-
ple finger tracking and string detection, thus paving the way
for an improved audio-visual violin transcription system.
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