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ABSTRACT
Computer-assisted violin tutoring requires accurate violin
transcription. For pitched non-percussive (PNP) sounds
such as from the violin, note segmentation is a much more
difficult task than pitch detection. This issue is accentuated
when the audio is recorded during an instrument practice
session at home which is acoustically inferior to a profes-
sional recording studio. This paper presents a new approach
to the problem by using the correlation between different
media streams for e-learning applications. We design a cap-
ture mechanism to record one audio and two video streams
simultaneously, and exploit the relationships among them
for enhanced transcription. State-of-the-art audio methods
for note segmentation and pitch estimation are implemented
as the audio-only baseline. Two web-cameras are employed
to track the right hand (bowing) and the left hand’s four
fingers (fingering) on the fingerboard, respectively. The au-
dio and visual information is then fused in the feature space.
Our new approach is evaluated with an audio-visual violin
music database containing 16 complete music pieces of dif-
ferent styles with 2157 notes in total. Experimental results
show that our multimodal approach achieves a 10% increase
in true positives, and a 8% reduction in false positives of
overall transcription performance in comparison with the
audio-only baseline.
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1. INTRODUCTION
The pedagogical foundation of our work is David Perkin’s

Theory One. Theory One says that ”people learn much of
what they have a reasonable opportunity and motivation to
learn” [2]. Theory One summarizes four essential aspects of
effective learning:

- Clear information;
- Thoughtful practice;
- Informative feedback;
- Strong intrinsic or extrinsic motivation.

Inspired by Theory One, we aim to create an interactive
Digital Violin Tutor (iDVT) whose initial version was re-
ported in [1]. It represents a genuinely new learning ex-
perience based on combinations of physical and virtual re-
sources and interactivity (blended learning). An important
attribute of iDVT is that it makes violin practice both fun
and effective, in step with the available technologies and
learning stimuli.

This pedagogical tool adds value to learning experiences
in the targeted area of learning: playing violin. It provides
clear information, motivation and fosters thoughtful practice
in contrast to repetitive and uninspired rehearsal, thereby
increasing the efficiency while reducing the cost of learning.

iDVT fosters self-paced learning whereby students can
learn at the rate they prefer. It is convenient for students
to access any time, any place, and furthermore, it reduces
travel time and travel costs for students and parents. Fur-
thermore does this system create a constructive learning en-
vironment where learners may network online, work together
and support each other. Even in the case when a teacher
or a parent is not available, iDVT will act like an intelli-
gent learning companion to provide instant and informative
feedback.

All the above benefits rely on an accurate violin transcrip-
tion, which plays a critical role during the development of
the iDVT system. In this paper we focus on enhancing violin
transcription.

In the analysis and understanding of music, the ’Note’ is
a basic event. Finding the pitch of notes of pitched non-
percussive (PNP) sounds such as from a violin is relatively
easy, but identifying the precise beginning and end of specific
notes and correlating them with the pitch (note segmenta-
tion) automatically is a challenging and critical task for com-
puter aided tutoring at home [1]. Existing methods exhibit
poor results in note segmentation or onset detection for PNP
sounds [3]. As pointed out in [4], a promising development
for onset detection schemes lies in the combination of cues



from different audio detection functions. In this paper, we
enhance this idea by fusing detection functions from differ-
ent media streams with the hope of significantly improving
onset detection and thereby transcription performance. Our
work is mainly motivated by the following observations and
hypotheses:

1) The bow stroke reversals (right hand) and vertical
movements are associated with note onsets;
2) The trajectories of fingers (left hand) are associated with
note onsets. We believe that these are the most important
visual cues which can assist in the note segmentation task.

We first derive audio and video detection functions, which
later are fused in the feature space. The fused detection
function is then sent to a peak picking module, energy based
onset/offset separation function, followed by pitch estima-
tion (Figure 1). This simple architecture is adequate for
the proof of concept and for determining whether and to
which extent the visual cues improve the onset detection
performance. In addition, the audio-visual approach can
also provide useful visual information to the player as learn-
ing feedback, such as playing gestures, and fingering and
bowing trajectories.

The rest of the paper is organized as follows. In the next
section, we review related work. Our conceptual framework
and methodology are outlined in Section 3. Sections 4 and
5 detail the audio and video processing components. We
then discuss our system integration process in Section 6. In
the last few sections, we analyze system performance and
conclude with comments on current and future work.

2. RELATED WORK
This section surveys the works which have inspired our

current research. There are few published works on music
transcription fusing audio-visual features and drum tran-
scription in [5] is the first system dealing with percussive
instruments using audio and video inputs. To our knowl-
edge, our system is the first audio-visual transcription sys-
tem with string instruments. Cognitive brain research has
shown that the temporal structure of violin music depends
on a number of combinatorial mechanisms of bowing and fin-
gering [6]. Such research has stimulated our initial attempt
to augment existing audio-only transcription with visual in-
formation. The hypothesis is that the different modalities
(e.g., audio and video) are generated from the same informa-
tion source simultaneously and they ought to be correlated.
We assume the complementary information from different
modalities is helpful in improving violin transcription per-
formance. The design philosophy of the proposed method is
in many ways comparable to audio-visual speech recognition
[7, 8, 9]. The main difference is that their work used facial
features to improve speech recognition, while our work ex-
ploits the motion features of bowing and fingering to assist
violin music transcription. Furthermore, multimedia fusion
approach has been applied in emotion recognition [10].

3. SYSTEM DESCRIPTION
We have attempted an initial design of a capture system

to simultaneously record audio and video streams. Our sys-
tem consists of one microphone and two web-cameras. To
simplify the tracking of bowing and fingering trajectories,
we have employed color markers on the fingernails and the
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Figure 1: Audio-visual violin transcription system.

end of the bow (see Figure 3). Distance and position of the
web-cameras were chosen to obtain the largest finger and
bow excursions.

The system architecture is illustrated in Figure 1. The
first step is a simultaneous processing of audio, fingering and
bowing motion in order to derive the individual detection
functions which are fused in the feature space. The fused
audio-visual detection function is then sent to peak pick-
ing and onset/offset distinction module, followed by pitch
estimation.

4. AUDIO PROCESSING
This section describes the basic audio transcription method

used in our system. This task is subdivided into two parts;
onset detection and pitch estimation. We have implemented
two types of best existing transcription methods, general
and instrument-specific, to be our audio-only baseline. That
comprises three different methods for onset detection and
three different methods for pitch estimation.

4.1 Onset Detection
The detection of onsets has been addressed in many pub-

lications before. Nevertheless this essential problem is far
from being solved. Note onsets technically represent a tran-
sient segment of the audio signal, or more specifically they
mark the instant in time, when the signal starts to evolve
from a steady state to another steady state, i.e. from one
note to the next. Since audio signals are oscillatory in their
nature it is not possible to just use the first order derivative
of the time domain signal to detect higher-level changes like
onsets. Most approaches perform an optional pre-processing
step, employ an intermediate signal, which is at a signifi-
cantly lower sampling rate than the audio signal itself and
reduce the signal to a more favorable representation. This



representation, which is called a detection function or in the
style of video processing a novelty function [11], is then used
by a peak picking method to find local maxima i.e. onsets.
A comprehensive evaluation of different detection functions
and peak picking methods for different types of audio sig-
nals was published recently in [4]. The authors explained
and compared different methods for finding onsets in musi-
cal signals and provided information on which methods they
found work best for which signal class and which application.
Based on these comparisons Collins set up a more compre-
hensive evaluation of onset detection functions, which he
described in [3]. As a conclusion of his experiments with
PNP sound he proposed a new method in [12], which was
developed under the assumption that the perception of sta-
ble pitch cues could be linked to the segmentation of notes.
We investigate in this paper three different methods, namely
an equal-loudness contour based method [3], a pitch-based
method [12] and an instrument specific version of the in-
verse correlation method described in [13]. The optimal set
of parameters for each method is exploited by running a
comprehensive test on our musical database.

Two different methods are employed for the task of picking
the peaks from the detection functions. The first method low
pass filters the detection function and then finds local max-
ima in this function based on a fixed threshold. The value of
this threshold is found via comprehensive tests against our
music database and is specific to every detection function.
The second method uses a base threshold and a median filter
to calculate an adaptive threshold, see [4] for details. We re-
frain from implementing some sophisticated post-processing,
like machine learning methods, since the focus of this work
is on the proof of concept of multimedia transcription.

4.2 Pitch Estimation
For the pitch estimation of the segmented notes we eval-

uate three different approaches. We use re-implementations
of Klapuri’s generic pitch estimation methods based on au-
ditory models described in [14] and [15] and compare it with
the violin specific pitch estimator described in [16]. All
methods perform very well on violin music.

5. VIDEO PROCESSING
This section describes the video processing module, illus-

trated in Figure 2. In the following subsections, we discuss
the right hand motion (bowing) and left hand fingers motion
(fingering) capturing and analysis to explore the relation-
ship between trajectories of bowing and fingering and onset
events of violin music. For violin playing, the right hand mo-
tion and left fingers motion are directly related with bowing
and fingering, which are two of the most important play-
ing techniques to produce notes (onsets, offsets and pitches)
[17]. The discussions for both hand and fingers motion share
the same procedure listed below:

• Camera view calibration for motion capturing, in which
part the camera view and position to capture proper
motion are discussed;

• Marker(s) tracking and polar coordinate system setup,
where we describe the marker tracking algorithm to
generate hand trajectory and finger trajectories of the
violin player in the original Cartesian coordinate sys-
tem of the video frame and illustrate how we set up a
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Figure 2: Video processing module.

new polar coordinate system for both hand and finger
parts to best decompose the motion trajectories;

• Motion decomposition and detection function construc-
tion. In this part, we formulate the motion decomposi-
tion procedure to generate new hand and finger trajec-
tories, based on which we construct detection functions
to aid onset detection of transcription by fusing with
the audio detection function discussed in Section 4.

5.1 Camera View Calibration
In the motion capturing step, we use two regular web-

cameras to capture the right hand and the left hand fingers
motion simultaneously. The capturing setting is 30 frames
per second (fps) for the web-cameras with ordinary indoor
lighting condition, which can be readily achieved on the sort
of computer systems available to home users.

After intensive study of violin playing technique [17], the
side view of violin player, shown in Figure 3(a), is chosen to
capture the right hand motion. From this view, two dimen-
sions of hand motion can be best captured: the movement
parallel to the bow direction and the movement orthogonal
to the bow. The hand motions in the two dimensions are
both critical to violin playing, because hand movement in
either of the two dimensions will produce new notes during
violin playing. From a side view, the capturing direction is
orthogonal to the two dimensional motion, which allows us
to best capture the two dimensional hand motion. In order
to best decompose hand motion in the two dimensions, the
hand polar system, shown in Figure 3(a), is set up as the
analysis basis for hand motion. The intersection point of
bow and fingerboard of violin is set as its origin O and the
direction to the left of origin is set as its polar axis L.

Based on the study of violin fingering, four fingers of the
left hand move to press and release the strings on the finger-
board to produce notes during violin playing. In addition,
the four fingers move independently towards and away from
the wrist of the left hand of the violin player because of
the physical constraints of human fingers. Also, the wrist is
usually overlapped with the origin of the finger polar coordi-
nate system, the lower crossing point of the fingerboard and
upper bout (body) of violin, as can be seen in Figure 3(b).
Therefore, a birds eye view is chosen to capture the fingers
motion of the violin player. To best decompose fingers mo-
tion, the lower crossing point of the fingerboard and upper
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bout of the violin is set as the origin O, and the direction to
the left of the origin is set as the polar axis L of the finger
polar coordinate system.

As can be seen in Figure 3, we use color markers to aid
the tracking of hand and fingers motion. In this phase of our
research in music transcription, we focus on the discussion
about hand and fingers motion analysis and audio-visual in-
formation fusion for the creation of audio-visual transcrip-
tion system. Bare hand and bare finger trackings are also
active research areas in the object tracking field of computer
vision [18, 19, 20]. However, the exploration of object track-
ing algorithms for bare hand and bare fingers is out of the
scope of this paper.

5.2 Right Hand Motion Analysis

5.2.1 Right hand marker tracking
The right hand marker with red color and round shape is

placed at the lower tip of the bow (Figure 3(a)). Because the
right hand of violin player firmly holds the bow and the rel-
ative position of the right hand to the bow does not change
at all during playing. Therefore, we track the trajectory of
the marker and use it as the hand trajectory.

To track the marker, we use the color information to derive
the tracking algorithm (Algorithm 1). As the marker mo-
tion is captured by a regular web-camera in ordinary indoor
lighting condition, the color of the marker does not always
remain the same during violin playing. It is important to
employ a color information update mechanism in step 3 to
maintain the robustness of the marker tracking algorithm.

Before marker tracking, in the first frame of a video se-
quence, we manually pick up the position (xh0, yh0) of the
intersection point of the bow and fingerboard as the origin of
the hand polar system. From the observation of violin play-
ing, the slight movement of the intersection point of bow
and fingerboard can be ignored. As a result, we assume the
origin (xh0, yh0) does not move during playing, and fix it
according to the first frame of the video sequence.

5.2.2 Right hand motion decomposition
After tracking, the trajectory (Xh, Yh) of the right hand

is obtained, which is based on the original Cartesian coordi-
nate system of the video frame. We need to decompose this
trajectory (Xh, Yh) into the two useful directions (Rh, Θh)
of the hand polar coordinate system as Equation (1).

Input: Right hand video sequence Vh with n frames
Output: Red marker positions in all frames (Xh, Yh)
Set red color RGB component value range as RGB;1

In the first frame I1 of Vh, find all pixels whose RGB2

component values fall into RGB;
Calculate the gravity center (xh1, yh1) of pixels found in3

step 2 as the marker position in I1, add it into marker
position set (Xh, Yh) and calculate the average RGB
value of those pixels to update RGB;
for i ← 2 to n do4

Search in frame Ii around the square region with5

length l around (xhi−1, yhi−1) to find all pixels
whose RGB component values fall into RGB;
Do the same as step 3 to get marker position6

(xhi, yhi) and update RGB;
end7

Algorithm 1: Color marker tracking algorithm, where
the initial RGB value is set as the marker color in the
first frame with a certain color range. Search square
length l is set to 100 in pixels in the implementation,
which is based on the observation of hand motion speed
of violin playing and the frame rate (30 fps) of the web-
camera.

[
rhi

θhi
] =

[ √
(xhi − xh0)2 + (yhi − yh0)2

arctan
∣∣∣ yhi−yh0

xhi−xh0

∣∣∣

]
(1)

where (xh0, yh0) is the position of the origin of the hand
polar coordinate system, (xhi, yhi) ∈ (Xh, Yh) is the hand
position in frame I, and (rhi, θhi) ∈ (Rh, Θh), 1 ≤ i ≤ n,
is the decomposed hand motion values in the hand polar
coordinate system.

Radius vector Rh reflects the hand motion trajectory along
the bow, and angle vector Θh reflects the hand motion tra-
jectory orthogonal to the bow. In Figure 4, after hand mo-
tion decomposition, we can clearly see that the hand motion
Rh and Θh trajectories are highly correlated with the human
annotated onset timing points.

5.2.3 Detection function of right hand motion
First, we discuss the correlation between radius trajectory

Rh and onset events.
From Figure 4, we can see that at each extremum point of

trajectory Rh, there is always a corresponding onset timing
point annotated by human. Bowing in violin playing is a
basic approach to produce separate notes. The changing of
bowing direction r (bow reversal) produces new notes. In
addition, when the bow is moving upwards (or downwards)
along bow direction r, the player suddenly slows down and
speeds up the bow to produce an onset. The two cases
of note production by bowing can be reflected in the con-
structed detection function of hand radius motion.

From the analysis of the relationship between violin bow-
ing and note onset, we conclude that when the motion of
bowing suddenly slows down and speeds up, a new onset
will be produced. In other words, when the speed of hand
motion R is lower, we are more confident that the corre-
sponding timing is an onset.

To model the above reasoning, we derive the first deriva-
tive R′h of hand motion Rh to represent the motion speed,
shown in Figure 4(a). And then we calculate the reciprocal
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Figure 4: Right hand motion relationship with hu-
man annotated onsets (drawn as circles). The tri-
angles point out the onsets which can be correctly
detected by the corresponding detection function.
(a) The analysis of right hand motion along the bow
(radius) (b) The analysis of right hand motion or-
thogonal to the bow (angle).

Rhr of R′h and normalize Rhr into [0,1]. As illustrated in
Figure 4(a), from Rhr we can tell there is more likely an
onset when the value of Rhr is closer to 1. With this prop-
erty, Rhr is defined as the detection function Dhr from hand
motion Rh for onset detection.

Another observation of violin bowing is that the angle θhi

changes during playing to produce new notes played by dif-
ferent strings from previous notes. However, the changing of
angle θhi is much less frequent than the changing of bowing
speed. Most of the time the bow angle keeps the same and
when there is a sudden change of angle, a new note is likely
produced, which means we could use the speed of bow angle
change as the indication that a new note is produced and
the new onset should be detected.

To model the above observation, we derive the first deriva-
tive Θ′h of hand motion Θh to describe the bow angle chang-
ing speed. After normalization into [0,1], we use it as the
detection function Dhθ for onset detection. As illustrated in
Figure 4(b), when there is a high value in Dhθ close to 1, we
would have more confidence that this timing corresponds to
an onset produced.

5.3 Left Hand Fingers Motion Analysis
In addition to bowing, another critical technique of violin

playing is fingering. As discussed in Section 5.1, four fingers
move independently towards and away from the origin of
finger polar coordinate system. Further, when the fingers try
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Figure 5: Fingers motion relationship with human
annotated onsets (drawn as circles). The triangles
point out the onsets which can be correctly detected
by the corresponding detection function.

to release or press the strings, fast motions will be revealed
in finger movements. Therefore, we conclude the fingers
motion along radius direction of the finger polar system is
of most interest. The fast speed of fingers motion could also
be used to indicate the onset events.

5.3.1 Finger markers tracking
As different color markers are used to mark the four fin-

gers, we use color marker tracking Algorithm 1 to track
each finger individually to get the fingers motion trajectories
(Xfj , Yfj), 1 ≤ j ≤ 4.

In the first frame of the input video sequence, we manually
label the lower crossing point of the fingerboard and upper
bout of violin as the initial origin (xf0,1, yf0,1) of the polar
coordinate system for fingers motion decomposition. How-
ever, we cannot assume the origin does not move, because
the camera is much closer (close-capturing) to the violin
compared with the right hand situation and the movement
of violin during playing must be considered. Therefore, we
set a 50 by 50 square area in pixels around the initial ori-
gin, and use a motion estimation technique to find the best
match positions (xf0,i, yf0,i) of this region in the following
frames, and obtain the trajectory of the origin (Xf0, Yf0).

The finger markers tracking and origin update are done
simultaneously. After that, the origin trajectory (Xf0, Yf0)
and four finger trajectories (Xfj , Yfj), 1 ≤ j ≤ 4, are ob-
tained for fingers motion decomposition.

5.3.2 Fingers motion decomposition
We follow the same approach to decompose the four finger

trajectories (Xfj , Yfj), 1 ≤ j ≤ 4, in the original Cartesian
coordinate system of the video frame into (Rfj , Θfj), 1 ≤
j ≤ 4, of finger polar coordinate system. The difference we
use the updated origin (xf0,i, yf0,i) for the current frame
instead of using the initial origin of the first frame all the
time. From the observation of violin fingering, the radius of
fingers motion Rfj , 1 ≤ j ≤ 4, is highly related with note
production, but not the angle Θfj , 1 ≤ j ≤ 4, of fingers
motion. Therefore, we only calculate Rfj , 1 ≤ j ≤ 4, during
fingers motion decomposition.

5.3.3 Detection function of fingers motion
As discussed at the beginning of this subsection, we could

use the fast speed of fingers motion to indicate onset timing.
Therefore, we derive the first derivative R′fj of Rfj , 1 ≤ j ≤
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4, as the speed functions of fingers, and further redefine it as
the detection function for onset detection after normalizing
into [0,1]. As illustrated in Figure 5, when the speed of one
fingers motion is fast at a certain time, it is very likely that
an onset is produced.

As each finger moves independently, we construct four in-
dependent detection functions Dfj , 1 ≤ j ≤ 4, for onset
detection.

6. SYSTEM INTEGRATION
In this section, we discuss how to fuse detection functions

from both video and audio to create an audio-visual violin
transcription system.

6.1 Data Fusion of Detection Functions
In order to clarify the relationship between audio and vi-

sual data, we divide the multimodal data fusion stage into
an intra-model data fusion part addressing the data fusion
of the six video detection functions and an inter-model data
fusion part for the combination of the audio and video de-
tection functions. That allows us to separately explore the
relationship between the video detection functions first and
then fuse audio and video detection functions at a higher ab-
straction level. In addition, this way of multimodal fusion
renders system implementation and tuning less complex.

In order to synchronize different detection functions, we
use linear interpolation to interpolate the six video detec-
tion functions and audio detection functions from their own
sampling frequencies to 200 Hz.
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Figure 7: The inter-model data fusion.

6.1.1 Intra-model data fusion of video model
As can be seen from Figure 4 and Figure 5, not all onset

timing points can be indicated by any of the six video detec-
tion functions; hand detection function Dhr, Dh and finger
detection functions Dfj , 1 ≤ j ≤ 4. Therefore, it is neces-
sary to utilize information from all six detection functions
to enable the extraction of more onset events. A combined
video detection function Dv, is calculated, which we expect
to correlate to the annotated note onsets.

Because of the clear correlation of each video detection
function with onset events, we employ a simple data fusion
method, weighting fusion, to fuse the Dhr, Dh and Dfj ,
1 ≤ j ≤ 4 to produce Dv. From the experimental results in
Section 7, we see that this method of data fusion works well.





Dv = Nor(whr ·Dhr + whθ ·Dhθ +
4∑

i=1

wfi ·Dfi)

whr + whθ +
4∑

i=1

wfi = 1
(2)

The fusion is formulated as Equation (2), in which w is
the corresponding weight of each detection function D, the
summation of the six weights equals 1, and Nor is the nor-
malization function. The six original detection functions,
Dhr, Dhθ and Dfj , 1 ≤ j ≤ 4, obtained in Section 5 and the
overall video detection function, Dv, are illustrated in Fig-
ure 6, from which we can clearly see that intra-model data
fusion of video model makes the video detection Dv much
more correlated with onset events than any single video de-
tection function.

6.1.2 Inter-model data fusion of audio and video
After obtaining the overall video detection function Dv,

we fuse it with the audio detection function by the same
strategy, weighting fusion, used in intra-model data fusion
of video. From the experimental results in next section, the
simple fusion method is proven to work well.

{
Dav = Nor(wa ·Da + wv ·Dv)
wa + wv = 1

(3)

The fusion is formulated as Equation (3). With two weights,
wa and wv, specified for audio detection Da and video de-
tection function Dv the final audio-visual detection Dav is
produced as the input of the next processing module, peak
picking, of our system.

Figure 7 shows the fused audio-visual detection Dav com-
pared with audio-only and fused video detection function.
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Figure 8: Example of a complete transcription result with audio-only and audio-visual methods.

As can be seen, Dav is more correlated with onset events
than Da and Dv. Interestingly, several onset events not re-
vealed in the audio detection function are picked up in the
combined audio-visual detection function, because of the aid
of visual information.

This promising point of multimodal data fusion of audio
and video models, to improve the onset detection perfor-
mance and overall transcription system performance of vio-
lin transcription system, is verified by our experimentation
discussed in Section 7.

6.2 Audio-Visual Violin Transcription
With the audio-visual detection function from the multi-

modal data fusion module, we describe in the following part
the creation of an audio-visual violin transcription system.

From Figure 1, we can see that peak picking module picks
the onset and offset timing points from the audio-visual de-
tection function. As described in Section 4, we integrate
two peak picking methods into our system: a fixed thresh-
old based method and a median filter adaptive threshold
based method. After peak picking, we get a series of timing
points, T , representing the onsets and offsets in violin mu-
sic. However, with the timing points, there is no information
that indicates whether a certain timing point is an onset or
offset.

In the pitch estimation module, we use onsets and offsets
timing points T and audio wave signal X as input. Then
an energy based approach is used to find active (not silent)
note segments Nt to separate onsets and offsets. Then pitch
estimation is performed based on each active note segment
of audio signal.

After pitch estimation the transcribed notes, N , described
by onset timing, offset timing and pitches are outputted as
the final violin transcription results of our audio-visual violin
transcription system.

Figure 8 shows an example of the transcription results, in
which the human annotated notes are displayed as large and
bright boxes, which our transcription system is compared
against. For both methods, audio-only and audio-visual, the
transcription results are drawn on top of the human anno-
tations. Audio-only is represented by the upper thin boxes;
the audio-visual method is displayed with the help of the

lower thin boxes. A bright filling indicates that the onset
and offset of the respective note as well as its pitch are cor-
rectly detected, whereas a dark red color represents errors
in either or both criteria. In the example in this figure the
audio-visual method is able to detect two onset events cor-
rectly, which are not obtainable with the audio-only method.
One onset event is missed by both methods.

7. EVALUATION
This section provides a description of the setup of our sys-

tem and discusses the results that our approach has yielded.

7.1 Violin Audio-Visual Database
All evaluations and tests were carried out against our

audio-visual database of 16 violin recordings, half of which
contain vibrato; performed by a professional violin player
from the Conservatory of Music at our university. The
recording took place in an indoor environment with regular
lighting conditions. Overall the compositions contain 2157
onsets and notes, where pauses (silence) also are considered
and to be recognized by our system as individual notes. Hu-
man annotation of the material was carried out and cross
checked by different educated musicians. The procedure of
locating the onsets in the audio was inspired by a work pre-
sented in [21]. Thus we are assured to have a reliable ground
truth for the evaluation of our system.

7.2 Evaluation Procedure and Metric
The evaluation process undergoes several phases. During

phase 1, in order to find an optimal parameter set for each
method and promising candidates for a subsequent pitch
estimation phase we assess different audio onset detection
functions: an inverse correlation based method (Inverse Cor-
relation), a pitch based method (Pitch based) and an equal
loudness based method (Equal Loudness) (see Section 4.1).
In particular, we create detection functions from all audio
files using DFTs with all combinations of hop sizes and win-
dow sizes ranging from 256 samples to 4096 samples and 512
samples to 8192 samples respectively while the sampling fre-
quency of the recorded pieces is at 44.1 kHz. We find for all
detection functions that using a window size twice as large as
the hop size works best, and finally the combination of hop



size 512 and window size 1024 yields the best performance,
of which the results are shown in the following parts.

The suitability of all three detection functions was eval-
uated by measuring the onset detection performance using
the two peak picking methods described earlier: the fixed
threshold based method (F) and the median filter based
adaptive threshold method (A). The tolerance for correctly
detected onsets is 100 ms. The measure for the accuracy of
each method is given in true positives (TP) and false posi-
tives (FP) calculated as:

TP = numberOfCorrectlyDetectedOnsets
numberOfAnnotatedOnsets

FP = numberOfWronglyDetectedOnsets
numberOfAllDetectedOnsets

The Receiver Operating Characteristics (ROC) curve of
TP and FP is also plotted for further comparison of the
performance of different methods over a range of thresholds.
The definitions of TP, FP and ROC curve apply to the eval-
uation of pitch estimation and overall performance of the
audio-visual violin transcription system.

For all detection functions combined with either of the two
peak picking methods, the inter-model fusion weight of audio
and video is evaluated by varying the weights for the audio
and video detection functions from 1.0 weight for audio and
0.0 for video up to the inversed ratio of 0.0 weight for audio
and 1.0 weight for video using a step size of 0.1 (see Figure
9 for illustration). The weights for intra-model data fusion
of video streams are fixed based on the observation of violin
playing as: whr = 0.3, whθ = 0.3, wf1 = 0.1, wf2 = 0.1,
wf3 = 0.1, wf4 = 0.1. In addition to the weights of audio
and video, also the base threshold for both peak picking
methods is assessed. The thresholds range from 0.001 to 0.5
with a granularity of 0.001 for values between 0.001 and 0.02
and a granularity of 0.01 for values between 0.03 and 0.5.

For pitch estimation assessment alone, the audio signal is
split into audio segments according to the human annotated
onsets. Klapuri’s methods ([14, 15]) are specified in detail
in his papers, so no further parameter evaluation is carried
out. For the method based on the semitone spectrum the
parameters α1 and α2 (see [16]) are evaluated in a range
from 1 to 10 with a step size of 1 in order to find the most
suited values for amplification of the fundamental frequency
and the octave error correction. The overall transcription
performance is evaluated by using the parameters that work
best for each sub task and combining each method together
to form a complete transcription system, consisting of onset
detection and pitch estimation with silence detection.

7.3 Experimental Results
This part illustrates the evaluation results for onset de-

tection, pitch estimation and the overall transcription per-
formance of our system.

7.3.1 Onset detection performance comparison
Figure 9 illustrates the effect of the video detection func-

tion on the onset detection performance. As clearly can be
seen when increasing the video fusion weight wv from 0.0
(which corresponds to audio-only) towards a value of 0.5,
the TP rises whereas the FP decreases. Progressing further
towards a weight for the video detection function of 1.0 the
performance is dropping. This illustration is an example of
how we evaluate the optimum values for the audio-visual
weights with fixed threshold for each detection function in
combination with each peak picking method.
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Figure 9: Effect of the video detection with different
fusion weights on onset detection performance.

Table 1: Onset detection results.

Method TP % FP % Best δ wv

Inverse Correlation F 81 16 0.33 –
Inverse Correlation & Video F 88 16 0.09 0.8
Inverse Correlation A 81 19 0.26 –
Inverse Correlation & Video A 88 23 0.18 0.5
Pitch based F 66 14 0.01 –
Pitch based & Video F 86 14 0.03 0.2
Pitch based A 75 20 0.006 –
Pitch based & Video A 91 20 0.03 0.5
Equal Loudness F 80 14 0.33 –
Equal Loudness & Video F 88 8 0.24 0.5
Equal Loudness A 90 15 0.15 –
Equal Loudness & Video A 94 15 0.17 0.4

Table 1 shows the experimental results of the six combina-
tions with their own TP, FP, best threshold δ and video fu-
sion weight wv. As can be seen from Table 1, combined with
the inverse correlation based detection function, the fixed
threshold based peak picking method works better than the
adaptive threshold peak picking method. Conversely, the
adaptive threshold peak picking works better than the fixed
threshold method if combined with pitch based and equal
loudness based detection functions. Further, for the com-
parison of three detection function construction methods,
in audio-only case, the equal loudness based method with
adaptive threshold peak picking method performs the best
with TP 90% and FP 15%. The second best method is the
one with the inverse correlation based method and the fixed
peak picking (81% TP, 16% FP). The pitch based method
performs worst with only TP 75% and FP 20%. More in-
terestingly, after fusing video information into audio, the
performance of each method gets improved with an increase
from 4% to 20% TP, which makes the onset detection more
accurate to further improve the overall transcription perfor-
mance.

The ROC curves of the six combinations (in bold in Table
1) are plotted in Figure 10. As can be seen, for each audio-
only method the curve segment with reasonably high TP and
low FP is shifted towards the left-top by a significant dis-
tance in the corresponding audio-visual curve, which clearly
shows the advantage of multimodal data fusion of audio and
video streams.

Finally, with multimodal data fusion of audio and video
streams, for onset detection, we obtain 94% TP and 15%
FP from equal loudness combined with adaptive thresh-
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Figure 10: ROC curves of onset detection results.

old method (audio-only: 90% TP, 15% FP) and 88% TP
and 16% FP from inverse correlation combined with fixed
threshold method (audio-only: 81% TP, 16% FP). Because
the audio-only performance of pitch based method is much
worse than the other two methods, we do not include it for
further system overall performance evaluation.

7.3.2 Pitch estimation performance comparison
Three pitch estimation performance methods are evalu-

ated in this part in terms of accuracy and time efficiency.

Table 2: Pitch estimation results in terms of accu-
racy and time efficiency.

Method TP % FP % Time/Note
Loscos 06 [16] 95 6 15.5 ms
Klapuri 05 [14] 93 7 1217.9 ms
Klapuri 06 [15] 94 7 719.5 ms

Table 2 summarizes the pitch estimation performance of
Loscos 06 [16], Klapuri 05 [14], and Klapuri 06 [15] in terms
of TP and FP of pitch estimation and average time spent
for pitch estimation of one note. As can be seen, the pitch
estimation method of Loscos 06 performs the best both in
accuracy and time efficiency. For the whole database, it per-
forms 95% TP and 6% FP with spending 15.5 milliseconds
on average for pitch estimation of each note. Klapuri’s two
methods perform well in terms of accuracy. However, they
are too time consuming for our intended e-learning applica-
tions.

7.3.3 Overall transcription performance comparison
Integrating Loscos 06 pitch estimation method into our

violin transcription system, we further evaluate the overall
transcription performance for inverse correlation with fixed
threshold peak picking and equal loudness with adaptive
threshold peak picking in both audio-only and audio-visual
cases.

Table 3 illustrates the overall performance of the violin
transcription system. Clearly we can see with audio-visual

Table 3: Overall transcription results.

Method TP % FP % Best δ wv

Inverse Correlation F 62 27 0.19 –
Inverse Correlation & Video F 73 20 0.10 0.8
Equal Loudness A 74 36 0.14 –
Equal Loudness & Video A 83 28 0.16 0.5

data fusion, the overall performance improves with about a
10% TP increase and about an 8% FP reduction. The over-
all transcription performance results prove the multimodal
data fusion of audio and video cues is very promising in
application oriented violin transcription system.
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Figure 11: ROC curves of overall performance.

The ROC curves over a range of thresholds are plotted in
Figure 11, where we can see that the ROC curve of audio-
only transcription system is significantly shifted towards the
left-top direction. That means by fusing video information
into an audio-only transcription system, we can significantly
improve the overall transcription accuracy.

8. DISCUSSION
Experimental results in this pilot study clearly verify our

initial hypothesis that violin music transcription can be im-
proved significantly by fusing audio and visual cues. How-
ever, there are many aspects that deserve in depth investiga-
tions in order to further enhance transcription performance.

We have developed this new approach with a clear appli-
cation scenario; personalized violin education at home. That
is, the system should be implemented with off-the-shelf hard-
ware and be practical in home environments. The recording
environment, student and teacher’s home is clearly differ-
ent in comparison with a professional recording studio. We
can expect much less professional lighting and much higher
noise level at home. Robustness of audio and video pro-
cessing methods becomes a critical issue. We expect that
multimedia fusion based methods will play a larger role in
such applications.

Although we have chosen the violin as the instrument for



our method, we believe that the main design considerations
generalize to other instruments.

We note that visual information not only is helpful for vi-
olin transcription, but also serves as a direct visual feedback
which helps students to rectify bad playing habits even if
correct notes are produced based on audio analysis.

9. CONCLUSIONS
We have presented the first attempt and experience with

a violin music transcription system fusing audio and visual
cues. It incorporated state-of-the-art audio-only music tran-
scription methods as the baseline. We used a simple multi-
media fusion technique for the proof of concept. Our exper-
imental results demonstrate that multimodalities are supe-
rior to single modality in note segmentation.

Our project has lead to several innovations in combining
audio and video processing. In audio processing, we have
demonstrated that instrument-specific methods performed
better than generic methods in terms of accuracy and com-
plexity. In our video processing module, we have proposed
novel methods to track bowing and fingering trajectories ef-
fectively for the purpose of enhancing violin music transcrip-
tion. To integrate the system, we have explored intra-model
and inter-model feature integrations.

The proposed method can be improved in many ways.
The transcription performance of our method is not yet good
enough for real life applications. We have taken an early
data fusion approach in our system, but could investigate
data-fusion in different stages, for example, late data-fusion
in combination with machine learning methods. These are
important areas for future work. Furthermore, our observa-
tion shows that an intelligent application of haptic sensors
could improve music transcription.

To broaden its applicability, we have started to investi-
gate various methods of finger and bow tracking with and
without markers. Music transcription has many applications
such as music education, which requires very high transcrip-
tion speed and accuracy. We have taken the first step to
enhance music transcription of string instruments by fus-
ing multimedia streams in the hope to enhance the system
performance which can satisfy end-users’ requirements.
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