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ABSTRACT
Multimedia playback is restricted by the processing power
of mobile devices, and in particular, the playback quality
can be degraded due to insufficient processing power. To
address this problem, we propose a new workload-scalable
transcoding scheme which converts a pre-recorded video bit-
stream into a new video bitstream that satisfies the device’s
workload constraint, while keeping the transcoding distor-
tion minimal. The key of this proposed transcoding scheme
lies on a new workload prediction model, which is fast, ac-
curate and is generic enough to apply to different video for-
mats, decoder implementations and target platforms. The
main contributions of this paper include 1) a workload pre-
diction model for decoding MPEG video based on an offline
bitstream analysis method; 2) a transcoding scheme that
uses the proposed model to control the decoding workload
on the target device. To facilitate our transcoding scheme,
we have proposed a compressed domain distortion measure
(CDDM) that takes effects from both frames per second
(fps) and bits per frame (bpf) into consideration. CDDM en-
sures the transcoded video bitstream to have the best play-
back quality given the device’s workload constraint. Both
the workload prediction model and the transcoding scheme
are evaluated experimentally.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis;
H.5.1 [Multimedia Information Systems]: Video

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
After a decade of tremendous growth, mobile devices to-

day are becoming an important entertainment platform for
streaming video and multimedia content. This application
scenario is a fast emerging area with huge economic impact.
However, supporting video applications on mobile devices is
challenging due to the limited processing power. Advanced
video formats such as MPEG-2 and MPEG-4 can effectively
compress the video files in terms of bit rate. However, they
demand high decoding workload. Currently, most mobile de-
vices’ processor frequencies are in the range of 200-600MHz,
which makes it hard for them to decode high quality video
bitstreams at high frame rates, 20-30 frames per second
(fps). For low speed processors, the decoding workload re-
quirement cannot be met. Given versatile mobile devices
with various processing powers, how to match a transcoded
video bitstream to a mobile device’s processing power, so
that the best playback quality is guaranteed, is the problem
we seek to address in this paper. Clearly, the purpose of our
transcoding scheme differs fundamentally from that of con-
ventional transcoding schemes which are usually designed
for format conversion or bandwidth adaptation.

Our projected application scenario is that mobile devices
request video bitstreams from a server. Due to the limited
processing power, mobile devices are not capable of decoding
the original video bitstream in real-time. For such a case,
we propose a scheme to transcode the original video bit-
stream to meet the decoding workload constraint of the tar-
get device. Figure 1 shows the architecture of our proposed
scheme, where a transcoding proxy employing our scheme is
setup between the video file server and mobile devices. The
proxy receives the architecture-specific information from the
mobile devices along with their streaming or downloading
requests. According to the provided information, the proxy
transcodes the original video bitstream to satisfy the con-
straint.

The transcoding scheme works in the compressed domain
to minimize the transcoding overhead. It does not involve
full video decoding and re-encoding, but only drops frames
and Huffman codes in the compressed domain. There are
two challenges: 1) To decide how many frames or Huffman
codes should be dropped so that the reduced workload is
kept just below the constraint. 2) To devise an algorithm
that selects the best quality video bitstream among all pos-
sible candidates with the same workload.

To address the two problems we develop a workload pre-
diction model for video decoding and a compressed domain
distortion measure (CDDM). Using the workload prediction
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Figure 1: System architecture for the transcoding
scheme

model, we can predict the decoding workload based on infor-
mation extracted from the video bitstream. The proposed
transcoding scheme works in three steps. In the first step,
using the workload prediction model, the scheme generates
possible candidates satisfying the workload constraint. In
the second step, using CDDM, the scheme estimates the
distortion of these candidates as compared to the original
video bitstream and selects the one with the least distor-
tion. Then, metadata is generated to indicate which frames
or Huffman codes should be dropped. In the third step, the
transcoder drops frames and Huffman codes according to
the metadata and generates the target video bitstream.

The contributions of this paper are two-fold:
1) We propose a workload prediction model that predicts the
decoding workload of a video bitstream based on information
extracted from the video bitstream. Our experiment shows
that the model is very accurate, even with different video
formats, decoder implementations and target devices.
2) Based on the workload prediction model, we propose a
compressed domain transcoding scheme, which can

• accurately control the decoding workload of the tar-
get video bitstream by using the workload prediction
model.

• keep the distortion between the target and original
video bitstream minimal by using CDDM.

The paper is organized as follows. Related works are re-
viewed in Section 2. Section 3 details the proposed workload
prediction model. The transcoding scheme is presented in
Section 4. Evaluation of the workload prediction model and
transcoding scheme is in Section 5. The conclusion and fu-
ture works are discussed in Section 6.

2. RELATED WORKS
Transcoding is a well-studied subject [3, 13, 17, 23]. Ear-

lier transcoders are mainly designed to perform format or
bit-rate conversion. In recent years, as mobile devices are
becoming a popular multimedia platform, some transcoders
are proposed to reduce the frame size or frame rate to fit the
constraints of mobile devices. However, to our knowledge,
there has been no published work on workload-scalable video
transcoding that can accurately match the bitstream to the
target mobile device’s processing power. We believe that
this will become an important application scenario in the

near future. This section, therefore, surveys related works
on MPEG video workload modeling.

Several workload prediction models for video decoding
have been proposed in the literature. The existing models
can be classified into two categories: models based on his-
tory (online approach at the client side to predict workload
on-the-fly based on workload history) and models based on
information extracted from the video bitstream (offline ap-
proach to extract information from the bitstream to obtain
the predicted workload in the form of metadata).

In the first category, Choi et al. [9] have proposed a frame-
based Dynamic Voltage Scaling (DVS) scheme. The decod-
ing workload of the current frame is predicted by a weighted-
average of workloads of the previous same-type frames. Bav-
ier et al. [7] proposed a model which can predict not only the
decoding workload of a frame, but also the decoding work-
load of a network packet. In that paper, three predictors to
predict the workload of decoding a frame and another three
predictors to predict the workload of decoding a packet were
proposed and analyzed in terms of performance. Son et al.
[19] proposed a model that predicts the decoding workload
in a larger granularity, Group of Pictures (GOP), which con-
tains a number of frames. This prediction model makes use
of previous frames’ workloads, and incoming frames’ types
and sizes. The history-based models need to fully decode the
video bitstream to obtain the historical record. Compared to
video decoding, the computational complexity of prediction
is very low. These models are usually adopted at the client
side to predict the workload on-the-fly. However, due to the
unpredictability of video decoding workload (the maximum
workload of decoding a frame or a macroblock (MB) can be
larger by more than ten times of the minimum workload),
the history-based models suffer in terms of accuracy.

The models in second category (offline bitstream anal-
ysis) predict the decoding workload based on information
extracted from the video bitstream. In [14], Mattavelli et
al. proposed a scheme that divides the decoder into sev-
eral tasks and predicts each task by a linear function. The
model’s parameters are obtained by simulation to build the
model. The prediction by using this model does not need
full video decoding. Prediction results can be inserted into
frame header in any format. However, due to the unpre-
dictability of video decoding workload, estimating video de-
coding workload by mapping to some linear function will not
achieve good accuracy. Our analysis also shows that tasks
such as motion compensation (MC) cannot be modeled as a
linear function.

For the second category, Lan et al. [12] also proposed
a model that predicts the workload of decoding one mac-
roblock by four parameters: macroblock type, motion vec-
tor magnitude, motion vector count and number of non-zero
DCT coefficients. These parameters are multiplied with cor-
responding weights and added with a safety margin to get
the prediction result. Although this model can predict the
decoding workload accurately, it is not designed to apply to
generic processors, since the model is proposed for a decoder
implemented on a processor that is designed specifically for
multimedia processing. It is also unclear about the decisions
to select the weights for these parameters.

Schaar et al. [18] introduced a concept of virtual decoding
complexity, which can be regarded as a special feature of the
video bitstream. For different target devices, the virtual de-
coding complexity is converted to the actual workload using



different parameters. By adding a layer of virtual decoding
complexity between the video bitstream and actual work-
load, this approach can be easily extended to a variety of
existing and future image and video compression schemes.
However, the computation for the virtual decoding complex-
ity needs information derived from the decoded pixel value.
In other words, if we want to compute the virtual decoding
complexity of the video, we have to fully decode it first, and
this is computationally expensive.

The models in [12, 14, 18] were not evaluated for different
decoder implementations and video formats. To our knowl-
edge, different decoder implementations and video formats
affect the decoding workload considerably. A model suitable
for one decoder implementation or video format may not be
suitable for others. Therefore, the models in [12, 14, 18]
may not be generic for different decoder implementations
and video formats.

In this paper, we propose a new workload prediction model.
It predicts the decoding workload based on information ex-
tracted from the compressed video bitstream. The proposed
model has advantages of being:
1) Accurate: Our experiments show that the model can
predict the decoding workload of a frame within an error
rate of 2% on average.
2) Generic: The model applies to different video formats,
decoder implementations and target devices.
3) Fast: The model only needs information from the com-
pressed domain for prediction, i.e., neither IDCT nor MC is
needed during the runtime.

3. A WORKLOAD PREDICTION MODEL
FOR DECODING MPEG VIDEO

This section presents a new workload prediction model
to predict the decoding workload of video bitstreams. The
model is designed to be generic to different video formats,
decoder implementations and target devices.

Considering a video bitstream encoded in a typical video
format such as MPEG-2 or MPEG-4, it is made up of frames
which consist of several slices, which in turn consists of Mac-
roblocks (MBs). Hence, decoding a video bitstream can be
considered as decoding a sequence of MBs. In our model,
the decoding workload is predicted in the MB granularity.
Decoding a MB involves variable length decoding (VLD),
inverse quantization (IQ), DC-AC prediction, inverse Dis-
crete Cosine Transform (IDCT), and Motion Compensation
(MC). For each task, the workload prediction is done sepa-
rately and the prediction workload of the whole MB is the
sum of all tasks’ workload.

3.1 VLD, IQ and DC-AC Prediction Tasks

3.1.1 VLD
In modern video codecs, DCT coefficients are encoded us-

ing variable length coding (VLC), which involves run length
coding, followed by Huffman coding. The workload of Huff-
man decoding depends on the number of Huffman codes
which is equal to the number of non-zero DCT coefficients.
Therefore, the workload of VLD in decoding one MB de-
pends on its number of non-zero DCT coefficients. Ex-
perimental results show that the relationship between VLD
workload and the number of non-zero DCT coefficients is
linear, i.e., Wvld = avld × ncoef + bvld, where Wvld is the

workload, ncoef is the number of non-zero DCT coefficients
in the MB, avld and bvld are parameters. The values of avld

and bvld vary for different MB types. We model the VLD
task by:

Wvld =

8<
:

avld intra × ncoef + bvld intra, Intra MB type
avld inter × ncoef + bvld inter, Inter MB type

bvld skip, Skipped MB type

(1)

3.1.2 IQ
For video decoders, there are two typical implementations

of the IQ task. The first implementation is to multiply the
quantization coefficients with every DCT coefficient. The
second implementation, which is more optimized, is to mul-
tiply the quantization coefficients only with the non-zero
DCT coefficient. For the first approach, the workload of the
IQ task can be modeled as a constant parameter Ciq, be-
cause for one MB, the number of DCT coefficients is fixed.
For the second approach, the workload of IQ can be mod-
eled as a linear function of the number of non-zero DCT
coefficients, i.e., Wiq = aiq × ncoef , where Wiq is the work-
load of IQ, ncoef is the number of non-zero DCT coefficients
in the MB and aiq is a parameter. To adapt to different
implementations, we model the IQ task as:

Wiq = aiq × ncoef + biq (2)

For the first approach, aiq is 0 and biq is equal to Ciq. For
the second approach, aiq is ciq and biq is equal to 0.

3.1.3 DC-AC Prediction
The DC-AC Prediction task is to estimate the DC or AC

coefficients from the previous decoded DC and AC coeffi-
cients. Experimental results show that for the same MB
type, the workload of the DC-AC Prediction task can be
approximated to a constant value. Hence, we model the
DC-AC Prediction task by:

Wacdc =

8<
:

bacdc intra, Intra MB type
bacdc inter, Inter MB type
bacdc skip, Skipped MB type

(3)

For some video format such as MPEG-2, there is no DC-
AC Prediction task. Our model can also adapt to those cases
by setting bacdc intra, bacdc inter and bacdc skip to zero.

Since VLD, IQ and DC-AC Prediction tasks can be either
modeled as a linear function of the number non-zero DCT
coefficients or a constant function, we can combine the three
tasks’ models together:

Wvld + Wiq + Wacdc =
8<
:

aintra × ncoef + bintra, Intra MB type
ainter × ncoef + binter , Inter MB type

bskip, Skipped MB type
(4)

where aintra, ainter, bintra, binter and bskipped are param-
eters depending on the target platform, video format, and
decoder implementation.

3.2 IDCT Task
Each MB consists of six blocks: four Y blocks, one U block

and one V block with a size of 8 × 8 pixels each. The input



data to the IDCT task is the same for all MBs, which results
in the same computational workload being incurred. How-
ever, the decoder may optimize the IDCT’s implementation
by considering the position of the least important non-zero
DCT coefficient to avoid redundant computation [16]. Some
decoders even implement the IDCT tasks in different ways
for different MB types. To make our model generic to dif-
ferent decoder implementations, we separate the IDCT task
into six sub tasks, and each task is the IDCT operation on
an 8 × 8 block. Since MB type can be one of the three
types: Intra, Inter, or Skipped, and for one block there are
64 positions of DCT coefficients, the sub task can be mod-
eled as a 3 × 64 table. The items (values) in the table are
the workload of IDCT task for the block with the MB type
and the position of the least important non-zero DCT co-
efficient provided. The workload of IDCT task of a MB is
then predicted as the sum of the six sub IDCT tasks.

3.3 MC Task
The MC task is also divided into six sub tasks with each

sub task as a MC operation for an 8×8 block. Experimental
results show that the workload of the MC task depends on
the MB type, MC type and motion vectors’ precisions. For
one MB, there are at most N motion compensation types
(N < 10), and its type can be one of the 3 MB types: Intra,
Inter, or Skipped. And there are 4 possible precisions for
both x-dimension and y-dimension motion vector (one-pixel,
half-pixel quarter-pixel, and eighth-pixel precision). Hence,
the model for a sub MC task is a table of size 3×N × 4× 4.
The workload of the MC task of a MB is then predicted as
the sum of the six sub MC tasks.

3.4 The Total Workload
The total workload of a MB is modeled by summing the

workload of VLD, IQ, DC-AC Prediction, IDCT, MC tasks
plus a safety margin, which is a constant parameter.

All the parameters of the model depend on the run-time
platform and decoder implementation. For a particular plat-
form and decoder implementation, the parameters can be
obtained offline. Using our model, the processing time re-
quired for workload prediction is 30 times or more faster
than real time. Experimental results show that processing
a thirty-second MPEG-4 video takes less than 1 second, on
a PC with Pentium-4, 2.0GHz processor and 1 GB mem-
ory. The overhead involved is negligible, so this workload
prediction model can be applied to real-time applications.

4. TRANSCODING SCHEME
This section presents our transcoding scheme that takes

in a video bitstream and transcodes it to a target one such
that its decoding workload is below the device’s constraint,
while keeping the distortion between the original and target
video bitstream minimal.

As mentioned in the previous section, the decoding work-
load depends on MB types, the number of non-zero DCT
coefficients, the position the last DCT coefficient, motion
compensation modes and motion vectors. Any of these val-
ues can be modified to decrease the decoding workload in
order to satisfy the workload constraint. Modifying MB
type, motion compensation modes or motion vectors re-
quires the transcoder to transcode the original video bit-
stream in the cascaded way, i.e., the transcoder fully de-
codes the video and then re-encodes it. This is very time

consuming. Our transcoding scheme is designed to oper-
ate in the compressed domain, i.e., the transcoder reduces
the decoding workload by discarding the Huffman codes or
drop frames. The advantages of such a design are two-fold.
Firstly, the transcoder’s computational complexity is rela-
tively low and no frame buffer is needed. Secondly, we do
not modify the MB type, motion compensation mode or
motion vectors during transcoding; therefore this known in-
formation can still be used to control the target workload.

The proposed transcoding scheme is done in the following
three steps:
Workload Control: Given the constraint, the decoding
workload is reduced by decreasing frame rate and dropping
Huffman codes. This step may generate more than one can-
didates having the workload below the workload constraint.
Distortion Minimization: Among the candidates, the one
with minimal distortion from the original video bitstream is
chosen as the final result, and its metadata is generated as
input for the third step. The metadata is the file indicating
which frames and Huffman codes should be dropped. It is
to be noted that the actual transcoding is done only in Step
3.
Actual Transcoding: the transcoder reads the metadata
and performs the actual transcoding of the original video
bitstream to the target video bitstream.

In the next subsections 4.1 and 4.2, more details about
Workload Control and Distortion Minimization will be dis-
cussed respectively.

4.1 Workload Control
In this step, we reduce the decoding workload of the video

bitstream by decreasing frame rate and dropping Huffman
codes. The challenge is that the target frame rate is un-
known and it is also not known how many Huffman codes
should be dropped so that the target workload can be ex-
actly below the device’s constraint. Since the target frame
rate must be below the original frame rate (which is nor-
mally 25 or 30 frame per second), the number of possible
frame rates is limited. Therefore, all possible frame rates
can be enumerated. For each frame rate, frames from the
original video bitstream are dropped according to the frame
rate. After that, using the proposed workload prediction
model in Section 3, decisions are made as to which Huffman
codes should be discarded for the remaining frames. The
details are shown in Algorithm 1.

Input: Target Workload (InputTarWL)
Output: Metadata for candidate video bitstreams
GetOriInfo(); /* to get necessary information from the
original video bitstream */
foreach FrameRate fr do

DropFrame(fr);
if (MinReqWL(fr) ≥ InputTarWL) then

continue
end
TotalTarWL = InputTarWL
foreach remaining frame fcurr do

AllocFrameWL(fcurr);
DiscardHuffman(fcurr);
Update(TotalTarWL);

end

end
Algorithm 1: Workload Control



DropFrame(fr):

This procedure will specify which frame to be dropped to fit
the frame rate. To ensure the remaining frames decodable,
we first drop B-frames, then P-frames from the tail of every
GOP and then I-frames. The frames are dropped evenly to
avoid jittering.

AllocFrameWL(fcurr):

For the current frame rate fr, we denote the N frames which
are kept after DropFrame(fr) as f0, f1, ..., fN−1. Let fcurr

be the current frame. The decoding tasks of each MB are
divided into two parts: Huff Comp includes the tasks with
workload depending on the number of Huffman codes; Non-
Huff Comp includes the rest of the tasks with workloads un-
changed after transcoding. We denote the original workload
of Huff Comp of the remaining frames as OriHuffWL[fcurr],
OriHuffWL[fcurr+1], ..., OriHuffWL[fN−1]. The workloads
of Non-Huff Comp of the remaining frames are denoted as
OriNonHuffWL[fcurr], OriNonHuffWL[fcurr+1], ..., OriNo-
nHuffWL[fN−1]. The workload of these components were
estimated in the function GetOriInfo() of Algorithm 1.

We denote TotalTarHuffWL the total target workload
of the Huff Comp. It is calculated as:

TotalTarHuffWL =

TotalTarWL−
fN−1X

i=fcurr

OriNonHuffWL[i] (5)

The target workload of Huff Comp for the current frame,
TarHuffWL[fcurr] can be calculated as:

TarHuffWL[fcurr] =

OriHuffWL[fcurr] × TotalTarHuffWL
fN−1X

i=fcurr

OriHuffWL[i]

(6)

DiscardHuffman(fcurr):

The details of this function is shown in Algorithm 2.
In Algorithm 2, function Discard(DCT Pos), “the Huffman
codes after DCT Pos” are the Huffman codes with position
after DCT Pos, in zig-zag sequence. DCT Pos is iterated
from the 63 to 0 so that the less important Huffman codes
are dropped first.

Input: TarHuffWL[fcurr]
Output: Metadata, assigned workload
if (TarHuffWL[fcurr] ≥ OriHuffWL[fcurr]) then

return OriHuffWL[fcurr];
end
for DCT Pos = 63 .. 0 do

Discard(DCT Pos); /* drop the Huffman codes
after DCT Pos of all the blocks in the current
frame */
Calc(Huff WL); /* workload of the Huff Comp
after discarding the Huffman codes */
if (Huff WL ≤ TarHuffWL[fcurr]) then

return Huff WL;
end

end
Algorithm 2: Discard the Huffman Codes

Update(TotalTarWL):

After discarding the Huffman codes, TotalTarWL is updated.
Since the workload of Non-Huff Comp does not change, the
TotalTarWL for the remaining frames is updated by:

TotalTarWL = TotalTarWL

− OriNonHuffWL[fcurr]

− TarHuffWL[fcurr] (7)

4.2 Distortion Minimization
In the previous subsection, the transcoder generates all

possible candidates that satisfy the device’s workload con-
straint. In this step, CDDM is proposed to select the can-
didate with the best quality. It is done by estimating the
distortion between the candidates and original video bit-
stream. The candidate with the least distortion is selected
for transcoding.

The first issue is to choose a method to measure distortion
between the original and the candidates. Traditionally, aver-
age PSNR or MSE are used to measure the video distortion.
However, average PSNR and MSE can only measure spatial
distortion but not temporal distortion [5]. In other words,
the average PSNR or MSE cannot measure the difference be-
tween a video bitstream of 30fps and that of 5fps. However,
the frame rate does affect the perceived visual quality. The
studies of subjective video quality [4, 10, 20, 21] show that
people perceive video quality degradation as the frame rate
decreases. While the traditional average PSNR or MSE can-
not measure the tradeoff between the frame rate and single
frame quality, the works in [8, 15] provide a solution, replac-
ing the dropped frames by the previous frames to compute
the average PSNR. The reason is because player maintains
the current frame on the screen before displaying the next
frame. With this method, both spatial distortion and tem-
poral distortion can be considered when using the average
PSNR as the distortion measure.

The second issue is that the actual calculation for PSNR
requires the original video bitstream and all the candidates
to be decoded fully. This is very time-consuming, and un-
feasible for transcoding on-the-fly. In our scheme, it is not
necessary to have the exact PSNR to select the best can-
didate. A rough estimation of all candidates’ distortions is
sufficient.

Wu et al. [22] also considered the tradeoff between the
spatial and temporal distortion. However, their approach is
not suitable for our transcoding scheme. The main difference
between their and our method is that the spatial quality is
scaled with different quality levels in their method, while we
simply drop the least important Huffman codes. Therefore,
we cannot use the quantization value to calculate the spa-
tial distortion. Furthermore, the relationship between the
perceptual video distortion and frame rate should be linear
(i.e., distortion between 5fps and 10fps should be more than
distortion between 10 fps and 15 fps). However, the video
quality in [22] is calculated by multiplying spatial distortion
with the frame rate which may not be accurate.

In the rest of this section, a new algorithm is proposed to
estimate the distortion between the original and transcoded
video bitstreams. The algorithm is operated in the com-
pressed domain to minimize transcoding overhead. The
estimation algorithm uses information from the metadata,
which makes the whole transcoding scheme even faster.



The proposed scheme reduces the decoding workload by
dropping Huffman codes and frames. Dropping Huffman
codes causes spatial distortion while dropping frames causes
temporal distortion. To simplify the problem, we analyze
the two distortion separately and then combine them. Be-
fore we go to the details of the algorithm, we first introduce
some notations:

• D(FA, FB) is the estimated distortion between frames
FA and FB .

• DS(FA, FB) is the estimated spatial distortion between
frames FA and FB.

• DT (FA, FB) is the estimated temporal distortion be-
tween frames FA and FB .

• H(F ) is the number of non-zero DCT coefficients of
the frame F .

4.2.1 Spatial Distortion
Spatial distortion happens when Huffman codes are dropp-

ed during transcoding. Therefore spatial distortion is related
to the number of Huffman codes dropped. For I-frames, the
number of Huffman codes can be used directly to measure
the spatial distortion. But, for P- and B-frames, distor-
tion propagation has to be considered as well. It is because
the frames that P- and B-frame depend on could also be
changed. In our algorithm, the spatial distortions caused
by dropping Huffman codes for different types of frames are
estimated by the following equations:

For I-frame

DS(I, I ′) = H(I) − H(I ′) (8)

where I and I ′ are the original and transcoded frames.

For P-frame

DS(P, P ′) = W × DS(F, F ′) + (H(P ) − H(P ′)) (9)

where P and P ′ are the original and transcoded frames; F
and F ′ are the frames P and P ′ depend on, respectively;
W is a parameter for presenting the attenuation effect for
distortion propagation. In our algorithm, we set W to 0.5
based on experiments.

For B-frame

DS(B, B′) = W × (DS(F1, F
′
1) + DS(F2, F

′
2))/2

+ (H(Bi) − H(B′
i) (10)

where B and B′ are the original and transcoded frames;
F1, F2 and F ′

1, F ′
2 are the frames B and B′ depend on,

respectively; W is the same parameter as in Equation 9.

4.2.2 Temporal Distortion
In addition to dropping Huffman codes, frames are also

dropped during transcoding, resulting in temporal distor-
tion. As mentioned before, the temporal distortion is esti-
mated by replacing the dropped frame by its previous un-
dropped frame. We calculate the distortion for every indi-
vidual frame and sum the result up as the distortion for the
whole video. We present how to estimate temporal distor-
tion for different types of frames in the following paragraph.
To simplify the problem, we assume the transcoder does not
drop any Huffman coefficient.

For P-frame
Assume P1 and P2 are two P-frames in the original video
and P2 depends on P1. After transcoding, P1 is transcoded
into P ′

1. P2 is dropped and is replaced by P ′
1. Now we want

to estimate the distortion between P2 and P ′
1. Since by

assumption, the transcoder does not drop any Huffman
coefficient from P1, P1 and P ′

1 are identical. The distortion
between P ′

1 and P2 should be equal to the difference
between P1 and P2. Since P2 depends on P1, the difference
between P1 and P2 can be estimated by the residual error
after motion compensation. The residual error again can
be estimated by the number of Huffman codes of P2:

DT (P1, P2) = H(P2) (11)

It is to be noted that a dropped P-frame may not be replaced
by the frame it depends on. But it must be replaced by the
frame in its dependency chain. So a more generic equation
for estimating the distortion between a dropped P-frame and
the replacing frame is:

DT (P0, P ) = W × DT (P0, P1) + DT (P1, P )

= W × DT (P0, P1) + H(P ) (12)

where P is the dropped P-frame, P0 is the frame replacing
P and P1 is the frame P depends on. It is noted that P0

and P1 can be the same frame and they can be either P-
or I-frame. W (the same parameter in Equation 9) is the
parameter representing the attenuation effect for distortion
propagation.

For B-frame
Estimating the distortion for a B-frame is more complex
because B-frame depends on two frames and a dropped B-
frame can be replaced by a frame that is not in its depen-
dency chain. If a dropped B-frame is replaced by a frame
that is in its dependency chain, we estimate the distortion
by:

DT (B, P0) = W × (DT (P0, P1) + DT (P0, P2))/2

+ H(B) (13)

where B is the dropped B-frame, P1 and P2 are the frames
B depends on. P0 is the frame to replace B; and P0, P1

and P2 can be the same frame and they can be either P-
or I-frame. W (the same parameter in Equation 9) is the
parameter representing the attenuation effect for distortion
propagation.
If a dropped B-frame is replaced by a frame that is not in its
dependency chain, the frame replacing it must be another
B-frame having the same dependent frames as the dropped
B-frame. We estimate the distortion by:

DT (B,B0) = H(B0) + H(B) (14)

where B is the dropped B-frame and B0 is the frame replac-
ing B.

For I-frame
In our scheme, we drop I-frame only after all the P- and
B-frames are dropped. So the dropped I-frame must be re-
placed by another I-frame. We estimate the distortion by:

DT (I, I0) = H(I) + H(I0) (15)



where I is the dropped I-frame and I0 is the frame replacing
I.

4.2.3 Total Distortion
Now we combine spatial distortion and temporal distor-

tion together. Assume F is the original frame. It is dropped
during the transcoding. F ′

0 is the frame replacing F and
F0 is the original frame of F ′

0. We estimate the distortion
between F and F ′

0 by

D(F, F ′
0) = WS × DS(F0, F

′
0) + WT × DT (F, F0) (16)

where WS and WT are the weight for spatial distortion and
temporal distortion, respectively. It is difficult to select op-
timal values for WS and WT , because for different video
content, the optimal value can be different. For example,
when the motion of the video is low, the spatial distortion
is more important, thus WS should be larger than WT , and
vice versa. In our current implementation, considering the
balance for all the cases, WS and WT are set to 0.5.

5. EVALUATION
The workload prediction model and the transcoding scheme

are evaluated in this section.

5.1 Workload Prediction Model Evaluation
In this subsection, we evaluate the workload prediction

model presented in Section 3. In the experiments, we con-
sidered two sets of video bitstreams: the training set and
testing set. We measured the actual workload of the video
bitstreams in the training set. Based on the actual workload
and information extracted from the video bitstreams, we es-
tablished the workload prediction model. Then, we used this
model to predict the workload of the video bitstreams in the
testing set. The prediction is in the Macroblock granularity
level.

5.1.1 Experiment Setup
We ran the experiments on three different target platforms

with three different decoders. The three target platforms are
IBM X-31 laptop (600MHZ Pentium M processor, 256MB
RAM, with Windows XP OS installed), SimpleScalar emu-
lator [6] (sim-safe profile) and HP iPAQ hx4700 series PDA
(624 MHZ Intel PXA270 processor, 64MB RAM, 128MB
ROM, with Windows Mobile 2003 OS installed). The three
decoders are the reference MPEG-2 decoder (TMN5) [2],
the reference MPEG-4 decoder (MOMUSYS) [11] and an
optimized MPEG-4 decoder in TCPMP project [1]. On Sim-
pleScalar, we measured the number of instructions as decod-
ing workload. On the IBM laptop and PDA, we measured
execution time as decoding workload. In the experiments,
we had 12 CIF raw videos with different contents shown in
Table 1.

Each of the video content was encoded in MPEG-2 and
MPEG-4 format with four bit rates: 256 KBps, 512 KBps,
768 KBps and 1024 KBps. In total, we had 4 × 12 = 48
videos encoded for MPEG-2 and MPEG-4 format respec-
tively. The frame rate was 25 fps, and GOP size was 10.
One or two B frames were inserted between two I/P frames.
For each experiment, we divided the 48 encoded video bit-
streams into 4 equal sets: set A, B, C and D. We re-ran each
experiment 4 times. For each run, one set was picked as the
testing set, and the remaining 3 sets are used as the training

Table 1: 12 CIF raw videos
No Video name Description
1 akiyo Still background and a foreground

object with very low movements
2 bridgeclose Still background and some small

objects with random movements
3 bridgefar Almost a still image
4 coastguard Still background and two foreground

objects with contrary movements
5 container Still background and two foreground

objects with same movements
6 foreman Background and foreground have

moderate movements
7 hall Still background and two objects

with moderate movements
8 highway Background with very fast movements
9 mother- Still background and two objects

daughter with very slow movements
10 news Still background, an object with fast

movements and two objects with very
low movements

11 silent Still background and an object with
moderate movements

12 walk Both background and two foreground
objects are with very fast movements

data. Using the training data, we run experiments to get the
actual workload and the corresponding compressed domain
information for the specific target platform, video format
and decoder implementation. Using this information, the
model’s parameters for the platform, video format and de-
coder implementation are determined. Then the built model
is used to predict the decoding workload of the 12 video bit-
streams in testing set.

5.1.2 Results and Analysis
Figure 2 shows the experimental results of the workload

prediction model. X-axis represents the prediction error
rate, which is calculated by:

error rate =
|actual workload − predicted workload|

actual workload
(17)

The Y-axis represents the percentage of MBs that were pre-
dicted below an error rate in X-axis. The three curves in
each graph indicate the prediction result for the reference
MPEG-2 decoder, reference MPEG-4 decoder and TCPMP
MPEG-4 decoder.

In Figure 2, graphs Laptop (1st run) and Laptop (3rd run)
show the results on the IBM laptop in the first and the third
run. Graphs SimpleScalar (1st run) and SimpleScalar (3rd
run) show the results on the SimpleSalar; and graphs PDA
(1st run) and PDA (3rd run) show the results on the PDA.
We do not show the result of the second and the forth run,
due to limited space, but the results of the other two runs
are very similar. This implies that the model is not biased
towards any particular video bitstream.

The results show that on both laptop and SimpleScalar,
for both MPEG-2 and MPEG-4 reference decoder, more
than 90% of MBs were predicted below an error rate of 10%
and 98% of MBs were predicted below an error rate of 20%.
But on the PDA, only 40% of MBs were predicted below



Laptop (1st run) SimpleScalar (1st run) PDA (1st run)

error rate (%)
0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e 

of
 M

ac
ro

bl
oc

k 
(%

)

20

30

40

50

60

70

80

90

100

110

Ref MPEG2
Ref  MPEG4
TCPMP MPEG4

error rate (%)
0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e 

of
 M

ac
ro

bl
oc

k 
(%

)

20

30

40

50

60

70

80

90

100

110

Ref MPEG2
Ref  MPEG4
TCPMP MPEG4

error rate (%)
0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e 

of
 M

ac
ro

bl
oc

k 
(%

)

20

30

40

50

60

70

80

90

100

110

Ref MPEG2
Ref  MPEG4
TCPMP MPEG4

Laptop (3rd run) SimpleScalar (3rd run) PDA (3rd run)

error rate (%)
0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e 

of
 M

ac
ro

bl
oc

k 
(%

)

20

30

40

50

60

70

80

90

100

110

Ref MPEG2
Ref  MPEG4
TCPMP MPEG4

error rate (%)
0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e 

of
 M

ac
ro

bl
oc

k 
(%

)

20

30

40

50

60

70

80

90

100

110

Ref MPEG2
Ref  MPEG4
TCPMP MPEG4

error rate (%)
0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e 

of
 M

ac
ro

bl
oc

k 
(%

)

20

30

40

50

60

70

80

90

100

110

Ref MPEG2
Ref  MPEG4
TCPMP MPEG4

Figure 2: Cumulative prediction error rate of the workload prediction model

an error rate of 10% and 90% of MBs were below an error
rate of 20%. Compared to the results on the laptop and
SimpleScalar, the prediction on PDA is much less accurate.
Our analysis showed that the error mainly came from the
MC task. It was because the MC task has to perform many
memory access operations and execution time for one mem-
ory access on PDA varied significantly in cases of cache hits
and cache misses. On PDA, the cache size was small, which
caused many cache misses. This in turn made the execution
time less predictable. Since the PDA did not provide any
mechanism for us to obtain the number of instructions, we
could only use the execution time as the measurement for
workload. This was why our model did not perform well
on the PDA. On the laptop, the cache size was large, cache
misses did not happen frequently. The execution time was
not affected by the cache very much, so the model performed
better. On SimpleScalar, we directly measured the number
of instructions, which was not affected by the cache misses
at all. That is why the prediction on SimpleScalar was the
most accurate one.

The results also show that the prediction on the TCPMP
MPEG-4 decoder was worse than on the other two decoders.
For TCPMP MPEG-4 decoder, the percentage of MBs that
were predicted below an error rate of 10% is about 20% less
than the percentage for the other two decoders. It is because
the TCPMP MPEG-4 decoder has a very optimized design.
Its implementation has many branches that are not related
to the bitstream content. The information of the bitstream
content is not enough to predict these branches.

Figure 3 shows the comparison between our model and the
history-based model proposed in [9]. The experiments were
run on the laptop using TCPMP MPEG-4 decoder. The
history-based model predicts the workload of the current
frame by the weighted-average of previous same-type frames’

workload. In the experiments, we set the size of the history
window to 5 and the weight of each frame in the window
to 0.2. The three curves show the prediction result of our
model, the history-based model and the actual workload in
frame sequence. It is observed that the curve of the proposed
model matches the curve of the actual workload much better
than the history-based model. The correlation coefficient
between the history-based model and the actual workload
was 0.54 and the average error rate was larger than 20%.
However, the correlation coefficient between our model and
actual workload was 0.91 and the average error rate was less
than 2%. This shows the advantage of our model.

5.2 Transcoding Scheme Evaluation
In this experiment, using the scheme proposed in Sec-

tion 4, we transcoded existing video bitstreams for different
decoding workload constraints. The transcoding scheme is
evaluated with the following two aspects: 1) whether Work-
load Control algorithm can accurately control the target de-
coding workload, which should be just below the device’s
constraint; 2) whether CDDM is accurate enough. That is
whether the estimation result matches that of the traditional
PSNR result.

To evaluate the first aspect, we measured the actual de-
coding workload of the target video bitstream and compared
it to the original workload constraint. To evaluate the sec-
ond aspect, we decoded all the candidates generated in Step
1. Then we calculated the actual PSNR between the candi-
dates with the original video bitstream. We checked if the
result we selected in Step 2 had a highest PSNR (the higher
the average PSNR is, the less distorted the transcoded video
bitstream is compared to the original video bitstream).



5.2.1 Experiment Configuration
The same 48 video bitstreams described in Section 5.1

were used in this evaluation. We ran experiments for 8 dif-
ferent workload constraints corresponding to the processor
frequencies (instructions/sec) of 100, 150, 200, 250, 300, 350,
400 and 500 MHz. Assuming the original frame rate to be
25 fps, the possible target frame rates were set to be 5, 8, 10,
15, 18, 20, 22 or 25 fps. The actual workload was measured
on SimpleScalar.

5.2.2 Workload Control
The Figure 4 shows the comparison between the actual

decoding workload of our transcoded bitstream and the con-
straint. The X-axis represents the processor frequencies and
the Y-axis represents the workload. Figure 4 shows how
accurately our transcoding scheme could control the work-
load of the transcoded video bitstreams. The curve labelled
Workload Constraint represents the constraints. The curves
labelled 256KBps Actual, 512-KBps Actual, 768KBps Actu-
al, and 1024KBps Actual represent the average of the ac-
tual workload of the video bitstreams with original bit rate
of 256KBps, 512 KBps, 768 KBps and 1024 KBps, respec-
tively. It is observed that all the 4 curves are all below and
close to Workload Constraint curve showing that the work-
loads of all transcoded video bitstreams are kept under the
workload constraint. Another observation is that the dif-
ference between the actual workload and the constraint was
large when the processor frequency was 500MHz. This was
because that processor frequency of 500MHz is more than
enough to decode the original video bitstreams.

5.2.3 Compressed Domain Distortion Measure
(CDDM)

After Step 1 of the transcoding scheme, we had the meta-
data of all possible candidates. In this experiment, we per-
formed the transcoding of all these video bitstreams and
calculated the actual PSNR from the original video bit-
stream. Using CDDM, we estimated the distortion of these
transcoded video bitstreams from the original, and then we
compared the estimated distortion values with the (1/Actual
PSNR) values.

Figure 5 shows a comparison between the CDDM value
and the corresponding (1/Actual PSNR) value for video
“news” with bit rate of 512 KBps and processor frequency
of 500 MHz. The matching of the 2 curves implies a high
correlation between the CDDM and actual PSNR. Figure
5 shows that our CDDM correctly estimated the distortion
for this test run of video “news” with bit rate of 512 KBps
and processor frequency of 500 MHz. In total, we have con-
ducted 192 such test runs. For one test run, if our algo-
rithm selected the candidate with lowest (1/Actual PSNR)
value, the selection was correct; otherwise, the selection was
wrong. Figure 6 shows the accuracy of the CDDM for differ-
ent processor frequencies. On average, in more than 92% of
192 experiments, our estimation algorithm selected the best
quality video bitstreams, and in the rest 8%, the second best
quality video bitstreams were selected.

6. CONCLUSION AND FUTURE WORK
We have presented a general model for predicting decoder

workload of MPEG video. We verify the predictive power of
this model by comparing it with well-known existing meth-
ods and actual workload measured on the device. We found
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that in the frame granularity, the average prediction error
between the model and the actual workload was less than 2%
with different video formats and decoder implementations.
We believe the value of our model is in providing a basis for
guiding low complexity embedded system design and many
other relevant tasks.

We then demonstrated how the model can be used in a
MPEG video transcoding scheme, which is designed to pro-
vide an optimal match between the transcoded bitstream
and a mobile device’s processing power. In our transcod-
ing scheme, we have further proposed two novel methods,
namely, a workload control method and a compressed do-
main distortion estimation method. Both methods have
been evaluated with experiments and were shown to be ef-
fective. The main advantage of our compressed domain
transcoding scheme is its speed. Unfortunately, this is ac-
companied by an inherent disadvantage of inflexibility such
as the inability of spatial scalability. This problem will be
addressed in our future work.
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