
Generic forward error correction of short frames for IP
streaming applications

Jari Korhonen & Yicheng Huang & Ye Wang

Published online: 16 June 2006
Springer Science + Business Media, LLC 2006

Abstract If the frame size of a multimedia encoder is small, Internet Protocol (IP)
streaming applications need to pack many encoded media frames in each Real-time
Transport Protocol (RTP) packet to avoid unnecessary header overhead. The
generic forward error correction (FEC) mechanisms proposed in the literature for
RTP transmission do not perform optimally in terms of stability when the RTP
payload consists of several individual data elements of equal priority. In this paper,
we present a novel approach for generating FEC packets optimized for applications
packing multiple individually decodable media frames in each RTP payload. In the
proposed method, a set of frames and its corresponding FEC data are spread among
multiple packets so that the experienced frame loss rate does not vary greatly under
different packet loss patterns. We verify the performance improvement gained
against traditional generic FEC by analyzing and comparing the variance of the
residual frame loss rate in the proposed packetization scheme and in the baseline
generic FEC.

Keywords Forward error correction (FEC) . Interleaving . Multimedia streaming .

Real-time transport protocol (RTP)

1 Introduction

Multimedia streaming is rapidly gaining popularity in the world of IP networking. In
large bandwidth wireline packet networks, Internet telephony (VoIP) and Video-
on-Demand (VoD) are already a part of consumers’ everyday life. In the wireless
domain, the change from traditional data communications toward real-time content
delivery is in progress.

Multimed Tools Appl (2006) 29: 305–323
DOI 10.1007/s11042-006-0016-4

J. Korhonen :Y. Huang :Y. Wang (*)
Department of Computer Science, School of Computing, National University of Singapore,
3 Science Drive 2, Singapore 117543, Singapore
e-mail: wangye@comp.nus.edu.sg

J. Korhonen
e-mail: jari.ta.korhonen@nokia.com

Y. Huang
e-mail: huangyic@comp.nus.edu.sg

The requirements for real-time data transport mechanisms are distinctively
different from those for traditional data communications: the transport rate is
typically fixed to the bit rate of the multimedia encoder and the system cannot
change the transmission rate according to varying network throughput as flexibly as
in applications using Transmission Control Protocol (TCP). More importantly, real-
time delivery requirements restrict the use of retransmissions to recover from
packet losses. This is why streaming applications must often rely on reproducing
missing data with purely receiver-based error concealment or redundancy-based
transmission strategies, which are often known as forward error correction (FEC).

In receiver-based error concealment schemes, the data transport system and
protocols are not involved in packet loss recovery. Error concealment is based
purely on the subjective characteristics of the multimedia data. In this kind of error
concealment, missing data sections are reproduced using, for example, data
repetition or interpolation. Readers interested in receiver-based error concealment
may refer to the survey on error recovery schemes for audiovisual data by Wah et al.
[17] or for audio by Perkins et al. [12].

The most efficient receiver-based error concealment techniques are codec-
dependent or mathematically complex, requiring high processing power. More
desirable trade-off between complexity and subjective quality can be achieved by
combining lightweight error concealment with simple packet loss recovery schemes
based on either retransmissions or FEC.

RTP, specified in RFC 3550 [15], is the de facto standard for delivering data with
real-time content over IP networks. The initial RTP design favors multicast-oriented
applications with strict real-time constraints, such as multiparty conferencing and
live broadcasting. However, the range of streaming applications is wide, allowing
video- and audio-on-demand applications with more relaxed real-time requirements
to benefit from retransmissions. This is why a payload format supporting selective
retransmissions using RTP has been proposed [13]. In any case, retransmission-
based packet loss recovery in real-time communications is not always an option. For
instance, retransmissions in multicast applications could cause problems that are
difficult to solve, such as feedback implosion [7]. Although protocols for reliable
multicast have been proposed, they do not provide an appealing solution for real-
time applications.

Forward error correction can be used even if there is no feedback channel at all.
In fact, FEC is typically the best choice for real-time multicast applications or real-
time networking in general when round-trip times are long. FEC schemes can
roughly be classified into two categories: application specific and generic.
Application specific FEC schemes are designed specifically for certain multimedia
codecs, with particular attention on the priority of each bit. Generic FEC is codec
independent.

The existing generic FEC methods in the literature are generally designed for
recovering full RTP packet payloads or the priority sections in each payload. The
main problem of such an approach is unstable performance. If the FEC scheme fails
to recover an RTP payload, all data included in the RTP packet is lost, even if there
are multiple individual frames. At the same time, the observed data loss rate varies
greatly according to the packet loss pattern. This is because the actual data loss rate
does not depend only on the packet loss rate, but also on which packets are lost. To
the best of our knowledge, we are the first to address the issue that the effective
unrecoverable transient frame erasure rate can vary even with constant packet loss

306 Multimed Tools Appl (2006) 29: 305–323

rate. This issue is relevant because from the viewpoint of the end user, slight but
stable degradation of audio or video quality is more acceptable than sudden
fluctuations in quality.

In this paper, we propose an alternative strategy for generating RTP payloads
consisting of multiple individual short data units (frames) and their corresponding
FEC units. In our scheme, FEC data is computed for frames, not RTP payloads.
Since each RTP packet carries several frames, we can efficiently decrease the
variation in frame loss rates under different packet loss scenarios by shuffling media
frames and FEC frames among RTP payloads efficiently. The performance
improvement can be shown by comparing the proposed scheme against the baseline
generic FEC in terms of the variance in residual frame loss rate under different
packet loss scenarios.

2 Background and related work

2.1 Packetization and scheduling

Frame sizes are highly dependent on the audio or video encoder being used. In
video coding, there are typically many different types of frames, and the frame size
varies much as well. Because there is an upper limit for transport unit (packet) size
in IP networks, large frames must be fragmented. In audio and speech coding,
fragmentation is not usually needed because the frame size is typically much smaller
than the maximum packet size.

The normal frame size of a high quality audio codec is around 400 B; for
example, MP3 (128 kbit/s stereo, 44,100 Hz sample rate) uses the constant frame
size of 418 B, and the corresponding MPEG Advanced Audio Codec (AAC)
bitstream comprises variably sized frames with an average length of around 380 B
[6]. Speech codecs use very small frames; for example, Wideband Adaptive Multi-
Rate (AMR-WB) speech frame size at 23.85 kbit/s is fixed at 61 B, and the frame
size for AMR at 4.75 kbit/s is only 14 B [5].

Each protocol layer appends some header data to the packets, causing significant
header overhead if the payload is small. Robust header compression (ROHC) [1]
can be used to reduce the size of the IP/UDP/RTP headers. However, not even
ROHC can fully solve the problem because link and physical layer headers as well
as a compressed version of the IP/UDP/RTP header still remain. This is why it is
often necessary to pack several frames in one RTP packet even if ROHC is used.
There are two major drawbacks in packing several frames in one RTP packet. First,
it makes the RTP stream more vulnerable because every packet loss erases several
clustered frames. Second, it causes extra delay at the sender, as the packetizer needs
to wait for all the frames from the encoder to arrive before the RTP packet can be
assembled and transmitted.

There are several approaches to tackling the first problem. The traditional
method is to use interleaving to spread adjacent frames in different packets [11].
However, interleaving introduces an extra delay, which makes the second problem
even more serious. The severity of the latency problem depends much on the
application. Generally, packetization latency and interleaving delay are concerns
only in highly interactive applications, such as Internet telephony. Even in this kind
of applications, observed end-to-end delays of up to 400 ms are usually acceptable.

Multimed Tools Appl (2006) 29: 305–323 307

Because the typical length of a speech frame is around 20 to 30 ms, at least some
frames can be packed together.

2.2 Generic FEC

Generic FEC is a codec independent method of protecting RTP payloads against
packet erasures by adding redundant data to the transport stream. There are several
variations of generic FEC. In its most trivial form, original data is replicated and
transmitted several times to increase the probability that at least one of the copies is
received. The drawback of this simple replication is the enormous proportional
overhead. However, even the use of a small amount of redundancy is sufficient to
achieve an adequate level of error protection.

A common method for generating FEC data is to take a set of packet payloads
and apply the binary exclusive or (XOR) operation across the payloads. This
scheme allows the recovery of missing data in the case where one of the original
packets is lost but the FEC packet is received correctly. The RTP payload format
for using generic FEC based on XOR operations has been published in RFC 2733
[14].

There are also many other more complex error correcting codes. Typically, these
codes are designed for detecting and correcting bit errors instead of data erasures.
However, in recent years, several proposals have been made to use well-known
error correcting codes, such as Reed<Solomon codes, for packet loss recovery as well
[14].

In the perspective of a transport protocol, all these codes work quite similarly: a
set of original n data packets are protected by k parity packets, resulting in n + k
packets in total. If any n of these n + k packets (including parity packets) are
received, all the lost original packets can be recovered [10]. The weakness of the
more complex schemes is computational complexity, which may cause performance
problems with long packets and large values of k and n. This is why we limit the
scope of this paper to XOR-based FEC codes only. However, the basic principles
discussed are easily convertible for other kinds of linear codes.

Figure 1 shows two basic schemes using the generic FEC defined in RFC 2733. In
this paper, we adopt the definition of function f(x, y,...) to denote the resulting FEC
packet when the XOR operation is applied to the packets x, y... from RFC 2733. In
example (a), every single packet loss in the original media stream can be recovered,
and in example (b), every packet loss can be recovered, assuming that the FEC
stream is received correctly in both cases. However, both schemes require more

a b

f(a,b)

c d

f(c,d) ...
Media stream

FEC stream
a)

b)
a b

f(a,b)

c d

f(c,d) ...

... Media stream

FEC streamf(b,c)

Fig. 1 Two sample schemes using generic FEC

308 Multimed Tools Appl (2006) 29: 305–323

network bandwidth because of the redundancy overhead: 50% in case (a) and 100%
in case (b). More examples are given in RFC 2733.

In practice, the media stream and the FEC stream are usually transmitted using
the same transport medium. This is why we cannot expect packet losses to occur
only in the media stream as both streams are likely to suffer from similar error
characteristics. In the network perspective, it is realistic to assume the media stream
and the FEC stream to form a single stream containing both media and FEC
packets. Given a sequence of media and FEC packets, we can easily see the
variation in error recovery rates when we examine the residual media data loss rate
after applying different kinds of loss patterns to the sequence.

2.3 Interleaving

According to several studies, bursty losses of multimedia frames or blocks are much
more harmful to perceived quality and more difficult to conceal than smaller gaps.
The same applies to speech, audio, video and even still images [2, 3, 9, 21].
Interleaving is commonly used in multimedia streaming to avoid losses of clustered
frames or data blocks. Basically, there are two forms of interleaving commonly used.
If several blocks are packed in one packet, the interleaver allocates adjacent blocks
to different packets (block interleaving). If each packet only contains one block, the
interleaver rearranges packets so that adjacent packets are not transmitted
consecutively (packet interleaving). In contrast to block interleaving, packet
interleaving is beneficial only in the presence of bursty packet losses.

There are several examples of techniques involving block interleaving. One such
scheme for audio streaming has been presented in [6], where the spectral elements
of audio frames are spread among several RTP packets to facilitate error
concealment. In that scheme, the critical header data may be extracted from the
audio frames and packed separately in different packets to be transported using
more reliable means [18]. Similar strategies have also been developed for video
streaming, where video frames are split up into smaller elements (blocks or slices)
[16, 19, 20]. This kind of strategies can be combined with Unequal Error Protection
(UEP) schemes by applying stronger FEC to high priority data [19].

Optimal mode and depth of the interleaving cycle depend on the application
and network conditions. Typical packet loss bursts in the Internet are rather short.
According to the measurements by Loguinov and Radha, the average burst length
is about two packets [8]. Most of the proposed interleaving schemes for IP
networking rely on predefined parameters. There are some proposals for adaptive
interleaving, but mostly concerning radio access networks rather than IP networks
[2].

3 Generic FEC for short blocks

The generic FEC reviewed in the previous section does not cater for RTP payloads
consisting of several individually decodable multimedia frames or data blocks. In
this section, we propose methods to extend the use of generic FEC to RTP payloads
containing separate frames or blocks. For brevity, we refer to all these elements as
Fframes._

Multimed Tools Appl (2006) 29: 305–323 309

3.1 Problem formulation

In theory, the remaining packet loss probability after using simple XOR-based FEC
follows Eq. 1, where pres is the residual packet loss rate, p is the packet loss rate in the
communications channel, and n is the number of packets in the set covered by the
FEC computation.

pres ¼ p 1� 1� pð Þnð Þ ð1Þ

However, the equation is valid only if the packet loss rate is measured over a long
sequence of packets. The local frame loss characteristics depend highly on the exact
packetization method. Considering a sequence of packets protected by one FEC
packet, the observed packet loss rate does not depend on the number of lost packets
only, but also on the packet loss pattern. One packet lost within a sequence can
always be recovered. If two packets in the same sequence are lost, we need to make
a distinction between two cases: two data packets are lost, or one data packet and
the related FEC packet are lost. In the first case, two original media packets are lost.
In the latter case, residual data loss comprises only one original media packet.

This is an undesirable feature because the same number of RTP packets lost may
lead to different numbers of residual packet losses observed above the RTP
protocol layer. This increases fluctuation in local residual media frame erasure
characteristics even under a constant packet loss rate. In multimedia streaming, the
quality perceived by the end user drops especially in the case of occasional heavily
clustered data losses. More stable performance would guarantee better subjective
output, even when the overall data loss rate remains the same.

When there are multiple frames in each packet, the method of arranging frames
into packets needs to be considered carefully because each packet that is not
recovered leads to several frames being erased. To allow as stable a performance as
possible, the local residual frame loss rate should depend on the packet loss rate
only, not the pattern of which specific packets are lost. Thus, the problem is to find
an optimal allocation of frames in packet payloads that fulfills this condition. The
essential measure for the quality of packet allocation is the variance in the frame
loss rate when only the packet loss pattern changes while the packet loss rate over
the sequence of a certain number of packets remains the same.

3.2 Definitions and outline for stable packetization

Assume that when there are frames x, y,... and a related parity FEC frame f(x, y,...),
these data frames and the FEC frame form a group of mutually dependent frames.
This definition is justified by the fact that a lost frame can be recovered by applying
the XOR operation to all the remaining dependent frames. An example is shown in
figure 2, where all mutually dependent frames are connected with lines. In general,
when the XOR operation is applied to n frames, the total number of frames in the
group (including the FEC frame) is n + 1. When n is small, error protection is strong
but redundancy overhead is large, as theoretical residual frame loss follows Eq. 1
and redundancy overhead follows 1/n.

In the following, it is assumed that there is a fixed number of slots, s, in every
RTP packet payload to be occupied by frames. In practice, s must be chosen so that
it is smaller or equal to the maximum packet payload size divided by the frame size.

310 Multimed Tools Appl (2006) 29: 305–323

For simplicity, we assume that all frames are equal in size. If this is not the case, the
length of each frame has to be indicated within the additional data inserted in each
packet.

As long as the maximum payload size is not exceeded, s can be chosen relatively
freely. However, a small s and a small frame size would cause significant header
overhead; this is why it is usually reasonable to choose s close to the maximum. If
possible, s should also be chosen so that it is a multiple of n + 1. This would allow
FEC frames and media frames to be spread evenly among all packets.

In an ideal situation, the number of frames and packets in an interleaving cycle
cannot be selected arbitrarily, but they must fulfill certain conditions. First of all, P
packets should accommodate exactly N FEC groups of packets (a FEC group is a
group of mutually dependent frames, such as {a, b, f(a,b)}). No slots should be left
empty. Therefore, condition (2) should be valid.

N nþ 1ð Þ ¼ Ps ð2Þ

In addition, there should be exactly as many dependencies between packets as
there are dependencies between the frames to be allocated in these packets. Every
FEC group contains n media frames plus one FEC frame. Thus, there are (n2 + n)/2
pairs of mutually depending frames in each FEC group, resulting in N(n2 + n)/2
pairs of mutually dependent frames in total, where N is the number of FEC groups.
Given P packets, there are (P2

j P)/2 unique pairs of packets in total. In an optimal
situation, N(n2 + n)/2 pairs of frames can be allocated evenly among (P2

j P)/2 pairs
of packets. In this case condition (3) applies. All the variables should have integer
values to fulfill the conditions.

N n2 þ n
� �

¼ P2 � P ð3Þ

From Eqs. 2 and 3, it is possible to solve the optimal number of frames F, packets
P and groups of frames N for each cycle with Eqs. 4–6, respectively. If these
conditions are not met, frames cannot be allocated in packets optimally, i.e., some
slots are left empty or parallel dependencies exist between packets.

P ¼ snþ 1 ð4Þ

F ¼ Ps ð5Þ

N ¼ F= nþ 1ð Þ ð6Þ

For example, if there is room for four frames per packet (s = 4) and the XOR
operation is applied to a set of three frames (n = 3), the optimal number of packets
(P) is 13, containing 52 frames (F), of which 39 are original media frames and 13
FEC frames. Table 1 summarizes some useful parameter combinations. Note that a

f(a,b) f(c,d)ca b d

Fig. 2 Dependencies between data and FEC packets

Multimed Tools Appl (2006) 29: 305–323 311

large value of s is better in terms of header overhead reduction, but a larger s also
leads to a larger F and a larger N, increasing the delay in packet generation and
reassembly processes.

In this paper, we consider IP networks where only packet erasures are concerned.
Therefore, all the dependencies between frames located in different packets are
actually dependencies between packets. Obviously, the loss of a packet pair with
several redundant mutual dependencies results in more frame losses than the loss of a
packet pair containing only a single pair of mutually dependent frames. In other
words, redundant dependencies should be effectively avoided because heavily biased
dependencies lead to unstable performance. This is shown in figure 3, where
dependencies between packets using the traditional generic FEC are marked with
lines.

In this example, one packet loss can always be recovered entirely. However, the
loss of two out of the first three packets could lead to loss of three or six media
frames. If the FEC frames are spread evenly among payloads, the situation is
changed: as shown in figure 4, loss of two packets out of the first three packets would
then always lead to loss of four frames. This is a clear improvement to the baseline
generic FEC scheme. However, the interleaving effect is still limited due to the short
interleaving cycle with three packets only. Much more significant performance
improvement can be achieved if a longer interleaving cycle is involved, but optimal
frame allocation would no longer be a trivial problem.

Following our intuition, we can easily draw up the basic guidelines for
packetization. First of all, frames that are mutually dependent must not be located
in the same packet. Second, redundant dependencies between the same packets
should be avoided. The problem of optimal packetization can then be formulated as
follows: every group of n + 1 mutually dependent frames should be allocated in the

l

g j

i

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6

h k

f(a,d)

f(b,e)

f(c,f)

f(g,j)

f(h,k)

f(i,l)f

b

c

a d

e

Fig. 3 Baseline generic FEC and the dependencies between packets

n s P F N FEC overhead (in %)

2 3 7 21 7 50

2 4 9 36 12 50

2 6 13 78 26 50

3 4 13 52 13 33

3 8 25 200 50 33

4 5 21 105 21 25

Table 1 Some useful parame-
ter combinations

312 Multimed Tools Appl (2006) 29: 305–323

packets so that there are no two (or more) groups with any two (or more) frames
located in the same packet. In other words, each group of mutually dependent
frames has to be allocated in a unique set of packets that is not overlapping any
other set of packets by more than one packet. Another important principle is to
spread FEC frames evenly across payloads. This can be achieved if the number of
slots s in each payload is a multiple of the number of frames per FEC group.

A packetization example following the principles presented above is illustrated in
figure 5. In this example, s = 3 and n = 2, when the resulting number of packets and
frames are P = 7 and F = 21 (of which 14 are media frames and seven are FEC
frames). Each of the groups of dependent frames has its own unique combination of
packets not conflicting with any other packet combination. In this example, the
packet combinations are (1,2,3), (1,4,5), (1,6,7), (2,4,6), (2,5,7), (3,4,7) and (3,5,6).
Therefore, the first group containing frames a, b, and f(a,b) is allocated to packets 1,
2 and 3; the second group of frames c, d, and f(c,d) to packets 1, 4 and 5, etc. As we
can see, there are no redundant dependencies between the same packet pairs as in
the example in figure 3. Another advantage of the proposed scheme that can be seen
in figure 5 is the interleaving effect. Because adjacent media frames are allocated in
different packets, bursty frame losses are easier to avoid. Also, this facilitates the
concealment of missing frames.

l

g j

i

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6

h k

f(a,d)

f(b,e)

f(c,f)

f(g,j)

f(h,k)

f(i,l)f

b

c

a d

e

Fig. 4 Generic FEC with even spread of FEC frames among packets

l

f(g,h) h

k

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6

f(k,l) j

a c f(e,f)

g f(i,j)

m

f

f(c,d)

e

f(a,b) b d

Packet 7

i n f(m,n)

Fig. 5 A packetization example following the proposed scheme

Multimed Tools Appl (2006) 29: 305–323 313

Finding an optimal allocation when n = 2 and s = 3 is a special case of the three-
dimensional matching problem, which has been proven to be NP-complete in a
strong sense [4]. This is why the frame allocation problem can be solved only in
polynomial time. Expectably, the problem is at least as difficult with larger values
for n and s. However, for relatively small values of s and n, it is reasonable to use a
computer program to systematically try all the possible frame allocation combina-
tions to find the possible solutions. The result can be used to generate static frame
allocation tables for the streaming application. For this purpose, we have imple-
mented the recursive algorithm described below. In the streaming application
perspective, the frame allocation is known a priori and the complexity of the
algorithm is not an issue.

We say that two packet combinations conflict if they contain two or more packets
that are the same. For example, combinations (1,2,3) and (1,2,4) conflict, but (1,2,3)
and (1,4,5) do not. In the algorithm presented, the system computes all the different
packet combinations in a logical order: (1,2,3), (1,2,4), (1,2,5), etc. If the test
combination does not conflict with any of the combinations already in the
combination list, it is added to the list. If all the possible combinations have been
tested and no solution is found, the recursive function returns false. The algorithm is
relatively efficient in terms of speed and stack memory usage. It has been
implemented in C and tested with a reasonable set of test cases. For illustration,
the recursive function is written in pseudocode below. When the function is called
for the first time, an empty combination list and the first possible packet
combination are passed as parameters.

function find_optimal_combination (combination_list, test_combination)

add test_combination to the combination_list

if combination_list is full
return true

endif

loop forever
compute next_test_combination
if next_test_combination does not conflict any combination in the combination_list

if find_optimal_combination (combination_list, next_test_combination) == true
return true

else
remove next_test_combination from the combination_list

endif
endif
if next_test_combination is the last test combination

return false
endif

end loop

end function

We have been able to find optimal frame allocation with all combinations of
values for n and s shown in Table 1. However, we have not proved that the optimal
frame allocation exists with all possible values of n and s. If the algorithm is not able

314 Multimed Tools Appl (2006) 29: 305–323

to find a solution, it will return false. In this case the user could try to find a
suboptimal allocation, leaving some of the slots empty, or constructing packet
payloads by combining smaller intermediate payloads, as explained in the following
subsection. In practice, extremely long interleaving cycles are not acceptable for
streaming applications, and the presented cases should be sufficient for most real-
life applications.

In general, the proposed frame allocation algorithm does not conceptually differ
much from conventional frame interleaving. They are both used to redistribute
frame losses more smoothly. Similarly, our use of FEC provides the same average
recovery rate for lost frames as the baseline generic FEC. The major difference
between the proposed scheme and conventional strategies lies in the co-design of
frame shuffling and FEC. Our scheme changes only the distribution of transient
frame losses when different error patterns are applied to a relatively short sequence
of frames.

3.3 Two-step payload generation for very small frames

As the proposed packetization scheme is based on spreading consecutive media
frames among a long sequence of RTP packets, an extra delay equivalent to
interleaving delay is presented at both the sending end and the receiving end. As
seen from Eqs. 4 and 5, the number of packets needed for one spreading cycle
increases linearly and the number of frames exponentially when the number of slots
in each packet is increased. This is why the proposed scheme cannot be applied as
such when the media frames are very short and many frame slots are needed in each
RTP payload because the interleaving latency would be far too high.

Another problem of the proposed scheme is performance instability under
conditions of bursty packet losses. The impact of bursty packet losses is different if
the burst hits the boundary of two different packet blocks instead of a single block.
The resulting loss rate is lower if the packet losses are divided among two different
cycles. This is illustrated in figure 6, where black boxes denote erased packets in the
packet error pattern. Media frames unrecoverable after applying the packet loss
pattern are marked with a cross. In this example, loss of four adjacent packets leads
to loss of essentially different numbers of frames, depending on the position of the
error burst in relation to the spread across cycles.

For short packets, it is possible to compromise between interleaving latency and
header overhead by generating RTP payload in two phases. First, the frames are
spread among intermediate payloads normally as explained in Section 3.2. The
number of frame slots in the intermediate payloads is smaller than in the final RTP
payloads, so the values for s, P and F are reasonably small. This approach also
facilitates the packetization process and the calculation of the frame allocation
table. In the second phase, the intermediate payloads are concatenated into final
RTP packet payloads. The concatenation is performed so that the intermediate
payload sequences partially overlap each other. This minimizes redundant
dependencies between the resulting RTP packets and spreads bursty packet losses
evenly among different cycles to avoid the problem shown in figure 6.

Figure 6 illustrates the two-step packet payload generation procedure. In this
illustration, the configuration for producing the intermediate payloads is exactly the
same as shown above in figure 4. In this example, the final RTP payloads have slots
for six frames each, instead of the three slots in the intermediate payloads.

Multimed Tools Appl (2006) 29: 305–323 315

It is easy to see the advantage of the two-step packetization arrangement in
figure 7. Using the two-step approach, the number of frames per cycle can be limited
to 42 (two intermediate payload sequences containing 21 frames each) and the
number of packets to eight. Otherwise, 78 frames would be needed per cycle to fill
13 packets, as seen in Table 1. The price to pay is the increased, though still
reasonable, number of redundant dependencies between packets. However, to get

Fig. 7 Two-step packetization procedure for very short media frames

a b

e

f(c,d)

f(a,b)

f(i,j)

d

g

ni

f(k,l)

m

c

k

f(g,h) h

f

f(m,n)

j

f(e,f)

l

a b

e

f(c,d)

f(a,b)

f(i,j)

d

g

ni

f(k,l)

m

c

k

f(g,h) h

f

f(m,n)

j

f(e,f)

l

packet loss pattern

 cycle 1 cycle 2

a) Four consecutive packet losses hitting cycle 1

a b

e

f(c,d)

f(a,b)

f(i,j)

d

g

ni

f(k,l)

m

c

k

f(g,h) h

f

f(m,n)

j

f(e,f)

l

a b

e

f(c,d)

f(a,b)

f(i,j)

d

g

ni

f(k,l)

m

c

k

f(g,h) h

f

f(m,n)

j

f(e,f)

l

packet loss pattern

 cycle 1 cycle 2

b) Four consecutive packet losses divided across cycles 1 and 2

Fig. 6 Bursty packet loss (a) hits one cycle or (b) spreads across the boundary between two cycles.
In the first case, six frames are lost; in the second case, only two frames are lost

316 Multimed Tools Appl (2006) 29: 305–323

the full advantage of this kind of frame alignment, the number of frames per packet
should be larger. The ideal situation is shown in figure 8, where bursty packet losses
are always positioned in the middle of some cycles but at the boundary of some
others. In this example, there are 21 slots in each packet.

Typically, each audio frame represents an audio clip of a certain length. This is
why interleaving delay is usually directly proportional to the number of frames in
each interleaving cycle. The relative interleaving delays in the baseline FEC scheme,
the proposed advanced FEC and packetization scheme and the proposed two-step
packetization scheme are compared in figure 9. As the figure shows, the two-step
payload generation strategy provides a good trade-off between interleaving delay
and performance stability.

3.4 Verification of the proposed scheme

To verify the practical value of the proposed packetization method, we have
compared it against the baseline FEC by applying different kinds of loss patterns to
the packet sequences and analyzing the variance in residual frame loss rate. The
sample packet configurations and the dependencies between packets were the same

Fig. 8 Optimal alignment of small frames in packet payloads

3 6 9 12 15 18 21

50

0

100

150

200

250

300

350

Delay
(frames)

Slots per
packet

Advanced (one step)

Advanced (two steps)

Baseline FEC

Fig. 9 Relative interleaving delays in the studied schemes compared

Multimed Tools Appl (2006) 29: 305–323 317

as in figures 3 and 5 above. The baseline packet sequence contained groups (cycles)
of three consecutive and mutually dependent packets (two such groups in the figure)
whereas in the proposed scheme, there were seven mutually dependent packets in a
cycle. For the sequences to be of equal length, the test sequences comprised seven
cycles in the baseline and three cycles in the proposed scheme, resulting in 21
packets in both cases. Figure 10 illustrates the test procedure, where a sample
packet loss pattern is applied separately to the packets in the proposed scheme and
the baseline FEC transport mode.

All the possible packet loss patterns with different numbers of packets lost were
applied to both packet sequences. Table 2 shows some of the packet loss combina-
tions, packet loss rates and average residual frame loss rates in each case. Figure 11a
shows the resulting maximum and minimum bounds for the frame loss rates in the
baseline and the advanced packetization scheme, respectively. Figure 11b depicts
the variance of the observed residual frame loss rates.

As shown in figure 11a, the average residual frame loss rate is the same in both
schemes. The average frame loss rate also follows closely the theoretical values
derived from Eq. 1. For simplicity in presentation, the theoretical frame loss rate is
not marked in the figure. Nevertheless, it can be seen that the lower and upper
bounds for the actual frame loss rate are brought closer to the average using the
proposed packetization scheme. It is notable that the maximum packet loss rate
always increments in steps of six frames and the minimum packet loss rate in steps

a b

e

f(c,d)

f(a,b)

f(i,j)

d

g

ni

f(k,l)

m

c

k

f(g,h) h

f

f(m,n)

j

f(e,f)

l

a b

e

f(c,d)

f(a,b)

f(i,j)

d

g

ni

f(k,l)

m

c

k

f(g,h) h

f

f(m,n)

j

f(e,f)

l

a

b

c

d

e

f

f(a,d)

f(b,e)

f(c,f)

a

b

c

d

e

f

f(a,d)

f(b,e)

f(c,f)

a

b

c

d

e

f

f(a,d)

f(b,e)

f(c,f)

a

b

c

d

e

f

f(a,d)

f(b,e)

f(c,f)

a b

e

f(c,d)

f(a,b)

f(i,j)

d

g

ni

f(k,l)

m

c

k

f(g,h) h

f

f(m,n)

j

f(e,f)

l

a

b

c

d

e

f

f(a,d)

f(b,e)

f(c,f)

a

b

c

d

e

f

f(a,d)

f(b,e)

f(c,f)

a

b

c

d

e

f

f(a,d)

f(b,e)

f(c,f)

packet loss pattern

sequence of packets (proposed scheme)

sequence of packets (baseline FEC)

cycle 1 cycle 2 cycle 3

 cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7

Fig. 10 Applying packet losses to the packets and analyzing the frame losses

Packets lost

(out of 21)

Packets lost

(in %)

Number of

combinations

Observed residual

frame loss rate

(in %)

0 0 1 0

2 1 210 1

4 19 5,985 5

8 38 203,490 23

12 57 293,930 46

16 76 20,349 72

20 95 21 95

21 100 1 100

Table 2 Different packet loss
pattern alternatives

318 Multimed Tools Appl (2006) 29: 305–323

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8
x 10

-3 Variance of residual frame loss rate

Packet losses (out of 21)

V
ar

ia
nc

e

Baseline FEC packetization
Proposed packetization

b) Variance of the frame loss rate

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

Frame losses versus packet losses

Packet losses (out of 21)

R
es

id
ua

l f
ra

m
e

lo
ss

es
 (

ou
t o

f 4
2)

Average (both schemes)
Baseline (min)
Baseline (max)
Proposed (min)
Proposed (max)

a) Residual frame loss rates

Fig. 11 Observed residual frame loss characteristics in the sample

Multimed Tools Appl (2006) 29: 305–323 319

of three frames when the baseline scheme is used. This is because there are three
frames allocated in each packet, and in the worst case, there is always an even
number of media frame packets lost. The reduction in the variance of the frame loss
rate is seen even more clearly in figure 11b. These results show clearly the efficiency
of the proposed packetization principle.

The example of 21 packets with three frames in each packet is a realistic scenario
for many applications. For example, the frame size of high-quality audio frames
encoded with MP3 or AAC is typically around 350 – 450 B, so it is possible to fit at
least three of them in an IP packet with a default maximum size of 1,500 B. In the
example, 21 frames would equal approximately 1 s of audio. For an average human
listener, variation in transient audio quality in cycles of 1 s is clearly notable. On the
other hand, quality fluctuation would be averaged out if a much longer timeframe is
used.

4 Other considerations and discussion

Quality fluctuation, which causes annoyance in the user, depends on many factors
such as the media type and the use scenario. Some multimedia coding schemes,
especially video codecs, rely on different prediction mechanisms that inadvertently
create some sort of dependence between separate frames. Therefore, loss of one
frame or block may influence several other frames or blocks due to error
propagation, and a small variation in frame loss rate can lead to a larger variation
in subjective quality. For this reason, our proposed approach for minimizing
variation in residual frame loss rate is especially useful. Our concept is useful also if
smooth, high quality is especially important for the end user. A good example is
music transmission (Internet radio or traditional audio streaming). In highly
interactive communications, such as Internet telephony, optimization of quality
plays a smaller role.

The main disadvantage of the proposed packetization scheme lies in breaking
down the original order of the media frames. Because consecutive frames are spread
among a long sequence of RTP packets, an extra delay equivalent to interleaving
delay is presented at both the sending end and the receiving end. In addition,
reordering influences the use of RTP header. Because the frames in each packet are
not arranged in their original order, timestamp as defined in RTP specifications
cannot be used.

It is of course possible to set the RTP timestamp according to the earliest media
frame located in the payload, and use additional timestamps and sequence numbers
in the payload data. However, this kind of maneuver is against the original RTP
design philosophy. Indeed, such modifications undermine the nature of RTP.

Essentially, the same problem arises when conventional interleaving is used with
RTP. Issues related to interleaving with RTP have been addressed in several
publications, for example, by Perkins et al. [11]. Also, many RTP payload formats
allow optional interleaving. The general consensus seems to be on accepting the use
of interleaving with RTP. It follows then that our proposed packetization strategy
should be acceptable as well.

In any case, the problem with interleaving latency remains as discussed in Section
2.1. Even though the problem in our system can be alleviated using the two-step
packetization strategy described in Section 3.3, the proposed strategy is not well

320 Multimed Tools Appl (2006) 29: 305–323

suited for applications giving users seamless, constant interaction. Nevertheless,
there are several applications that can benefit much from our proposed approach,
including Internet radio broadcasting, audio-on-demand, and even teleconferencing
with relaxed latency requirements. The basic concept is that much flexibility and
notable quality improvement can be achieved even without using overwhelmingly
long spreading (interleaving) cycles for packet generation.

5 Conclusions

The generic FEC schemes for RTP transmission proposed in the existing literature
do not provide stable performance under varying packet loss patterns. This is
because the data recovery rate in the various schemes depends not only on observed
packet loss rate but also heavily on the error pattern. This is especially harmful if
each RTP packet contains several independent frames from the original data stream
because that means every unrecoverable packet loss typically leads to the erasure of
several clustered data frames.

In this paper, we have proposed an alternative approach based on the efficient
shuffling of media frames and their related FEC frames among a longer sequence of
RTP packets. In terms of the residual frame loss rate under different packet loss
patterns, the proposed strategy pushes the best case and worst case performance
closer to the average. This significantly reduces fluctuations in the residual frame
loss rate. In a typical use case, this would highly benefit the subjective quality of the
resulting media output. We have verified the efficiency of our method by analyzing
and comparing the variance in residual frame loss rate in two packetization
scenarios, one following the baseline FEC extracted from the literature and the
other following our proposed strategy.

References

1. Bormann C (ed) (2001) Robust header compression (ROHC): framework and four profiles:
RTP, UDP, ESP and uncompressed. IETF RFC 3095

2. Chan K, Lu J, Chuang J (1999, May) Block shuffling and adaptive interleaving for still image
transmission over Rayleigh fading channels. In: IEEE Transactions on Vehicular Technology
48(3):1002–1011

3. Claypool M, Zhu Y (2003, May) Using interleaving to ameliorate the effects of packet loss in a
video stream. In: Proc. of the International Workshop on Multimedia Network Systems and
Applications (MNSA). Providence, Rhode Island, pp. 508–513

4. Garey MR, Johnson DS (1979) Computers and intractability. A guide to the NP-completeness.
Freeman, New York

5. 3rd Generation Partnership Project (2004) Transparent end-to-end packet switched streaming
service (PSS); RTP usage model. 3GPP TR 26.937 V6.0.0

6. Korhonen J (2002, May) Error robustness scheme for perceptually coded audio based on
interframe shuffling of samples. In: Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing, Orlando, Florida, pp. 2053–2056

7. Li V, Zhang Z (2002) Internet multicast routing and transport protocols. In: Proc. of the IEEE
90(3):360–391

8. Loguinov D, Radha H (2001, November) Measurement study of low bitrate internet video
streaming. In: Proc. of the ACM SIGCOMM Workshop on Internet Measurement, San
Francisco, pp. 281–293

Multimed Tools Appl (2006) 29: 305–323 321

9. Markopoulou A, Tobagi F, Karam M (2003, October) Assessing the quality of voice com-
munications over internet backbones. In: IEEE/ACM Transactions of Networking 11(5):
747–760

10. Nonnenmacher J, Biersach E, Towsley J (1998, August) Parity-based loss recovery for reliable
multicast transmission. In: IEEE/ACM Transactions on Networking 6(4):289–300

11. Perkins C, Crowcroft J (2000, March,) Effects of interleaving on RTP header compression. In:
Proc. of the IEEE INFOCOM, Tel Aviv, Israel, pp. 111–117

12. Perkins C, Hodson O, Hardman V (1998, September/October) A survey of packet loss recovery
techniques for streaming audio. In: IEEE Network 12(5):40–48

13. Rey J, Leon D, D, Rey J, Miyazaki A, Varsa V, Hakenberg R (2004, January) RTP
retransmission payload format. IETF AVT Internet Draft. Work in progress

14. Rosenberg J, Schultzrinne H (1999) An RTP payload format for generic forward error
correction. IETF RFC 2733

15. Schultzrinne H, Casner S, Frederick R, Jacobson V (2003) RTP: a transport protocol for real-
time applications. IETF RFC 3550

16. Stockhammer T, Wiegand T, Oelbaum T, Obermeier F (2003, September) Video coding and
transport layer techniques for H.264/AVC-based transmission over packet-lossy networks. In:
Proceedings of IEEE International Conference on Image Processing, vol. 3, Barcelona, Spain,
pp. 481–484

17. Wah BW, Su X, Lin D (2001, September) A survey of error-concealment schemes for real-time
audio and video transmissions over the internet. In: Proc. of IEEE International Symposium on
Multimedia Software Engineering, Taipei, Taiwan, pp. 17–24

18. Wang Y, Huang W, Korhonen J (2004, October) A framework for robust and scalable audio
streaming. In: Proc. of the ACM Multimedia ’04, New York, pp. 144–151

19. Zhai F, Eisenberg Y, Luna CE, Pappas TN, Berry R, Katsaggelos AK (2003, October)
Packetization schemes for forward error correction in internet video streaming. In: Proc. of the
Allerton Conference on Communication, Control and Computing

20. Zhu Q-F, Wang Y, Shaw L (1993, June) Coding and cell loss recovery for DCT-based packet
video. In: IEEE Transactions on Circuits and Systems for Video Technology 3(3):248–258

21. Zlatokrilov H, Levy H (2004, March) Packet dispersion and quality of voice over IP applications
in IP networks. In: Proc. of IEEE INFOCOM 2, Hong Kong, pp. 1170–1180

Jari Korhonen received his MSc degree in information engineering from the Department of

Electrical Engineering, University of Oulu, Finland, in 2001. He joined Nokia Research Center,

Tampere, Finland, as a Research Engineer in 2001. In 2004-2005 he is spending a research term at

the National University of Singapore, working with Dr. Ye Wang on multimedia communications.

Currently he is also pursuing towards his PhD in telecommunications at the Tampere University of

Technology, Finland. His research interests include multimedia streaming, wireless real-time

communications and audio coding.

322 Multimed Tools Appl (2006) 29: 305–323

Yicheng Huang received his BSc degree in computer science from the Department of Computer

Science, Fudan University, China, in June 2003. He joined the National University of Singapore as a

PhD candidate in September 2003. Currently, he is working with his PhD supervisor, Dr. Ye Wang,

on multimedia communications. His research interests include multimedia streaming, video coding

and wireless real-time communications.

Ye Wang received his Dr.-Tech. degree from the Department of Information Technology, Tampere

University of Technology, Finland. In 2001, he spent a research term at the University of Cambridge,

U.K., working with Prof. Brian Moore on compressed domain audio processing. He is currently an

Assistant Professor with the Department of Computer Science, School of Computing, National

University of Singapore.

Dr. Wang has had a nine-year career with Nokia Research Center in Finland as research engineer

and senior research engineer, where he worked on Digital Audio Broadcasting (DAB) receiver

prototype development, optimization of perceptual audio coding algorithms, error resilient audio

content delivery to mobile phones and compressed domain audio processing for multimedia

applications on small devices.

His research interests include audio compression and content-based processing, perception-

aware and low-power audio processing, and error resilient content delivery to handheld devices via

wireless networks. He holds a dozen patents in these areas and has published about 30 international

journal and conference papers. He is a member of the technical committee, Coding of Audio Signals

of the Audio Engineering Society; and a member of the Multimedia Communications Technical

Committee, IEEE Communications Society.

Multimed Tools Appl (2006) 29: 305–323 323

	Generic forward error correction of short frames for IP streaming applications
	Abstract
	Introduction
	Background and related work
	Packetization and scheduling
	Generic FEC
	Interleaving

	Generic FEC for short blocks
	Problem formulation
	Definitions and outline for stable packetization
	Two-step payload generation for very small frames
	Verification of the proposed scheme

	Other considerations and discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

