A Perception-Awar e L ow-Power Software Audio Decoder for Portable Devices

Samarjit Chakraborty YeWang Wendong Huang
Department of Computer Science
National University of Singapore
email: {samarjit, wangye, huangwd} @comp.nus.edu.sg

Abstract

We propose a new software audio decoder for processors
supporting multiple discrete voltage-frequency operating
points. The proposed decoding scheme allows the user to
switch between multiple output quality levels, where each
level is associated with a different rate at which the proces-
sor consumes energy. This will be an attractive feature in
battery-powered portable audio players and mobile phones,
where battery-life is often more crucial than the output
quality, especially in noisy environments. Towards this, the
frequency range of the decoder is partitioned into multi-
ple groups, in accordance with their perceptual relevance.
When a longer battery life is desired, only the most rele-
vant frequency components are decoded, which allows the
processor to be run at a lower voltage and frequency. We
have implemented this scheme using the MP3 decoder and
obtained up to 95% savings in the energy consumed by the
processor for AM quality output (in contrast to CD quality
output, which is associated with the maximum energy con-
sumption). This scheme is easy to implement, has no run-
time overhead and does not involve any runtime voltage or
frequency scaling.

1 Introduction

Lately, there has been a considerable interest in power
management schemes for portable devices running multi-
media applications. In contrast to well-studied run-time
techniques such as dynamic voltage scaling and dynamic
power management, in this paper we address the problem
of power consumption from a different perspective. We
propose a new software audio decoding scheme that allows
the user to switch between multiple output quality levels.
Each such level is associated with a different rate of en-
ergy consumption, and hence battery lifetime. Our scheme
is perception-aware, in the sense that the difference in the
perceived output quality associated with the different levels
is relatively small. But decoding the same audio clip at a
lower output quality level leads to significant savingsin the
energy consumed by the processor.

A high-level block diagram of our multi-level
perception-aware decoder is shown in Figure 1. The
decoding level chosen by the user to decode any audio clip
determines (i) the decoding scheme or algorithm that is run

Decoded
PCM samples
N i

Compressed

audio bitstream Processor

> (multi-level
audio decoder)

A A A
8o 28 ., 13
23 g8 1sg 18¢Q
=2 2a 1§83 59
8_.- 13 5 @S M‘go
o2 h e o< g~
<S5 o- Delcodmg T S '<
c = evel
8 <
2

Figure 1: A multi-level perception-aware decoder.
on the processor, and (ii) the voltage and the frequency with

which the processor is to be run. It may be noted that in
contrast to many dynamic voltage/frequency scaling tech-
niques, our scheme does not involve any runtime scaling of
the processor voltage or frequency. Given a processor with
a fixed number of voltage-frequency operating points, the
decoding levelsin this scheme can be tuned to match these
operating points.

The proposed scheme relies on partitioning the fre-
guency bandwidth of an audio decoder (like the MP3 de-
coder) into a number of groups, that is equal to the num-
ber of decoding levels (see Figure 1). These groups are or-
dered according to their perceptual relevance. If there are
four levels of decoding, i.e. Levels 14, then the frequency
bandwidth group that has the highest perceptual relevance
is associated with Level 1 and the group that has the low-
est perceptual relevance is associated with Level 4. As a
result, a reasonable output quality can be obtained by de-
coding only the Level 1 bandwidth group. To obtain the
best output quality, all the bandwidth groups are decoded
(which is what a standard decoder does). Such a partition-
ing of the frequency bandwidth into four levelsin the case
of MP3isshown in Table 11. Column 2 in thistable (show-
ing the Decoded subband index) is explained in Section 2.

The attractiveness of this scheme stems from the fact
that although the computational workload associated with
the decoding process scales ailmost linearly with the decod-
ing level, the lower frequency ranges have a much higher
perceptual relevance compared to the higher ones. There-
fore, when aclip is decoded at a lower level, by sacrificing
only a small fraction of the output quality, the processor

1AM and FM stand for Amplitude and Frequency Modulation. Here
we refer to their associated qualities in the context of radio broadcasting.

Decoding | Decoded | Frequency Perceived

level subband | range (Hz) | quality level
index

Level 1 0-7 0-55125 | AM qudity

Level 2 0-15 0-11025 Near FM quality

Level 3 0-23 0-16537.5 | Near CD quality

Level 4 0-31 0— 22050 CD qudlity

Table 1: Four decoding levels for the MP3 codec.

can be run at a much lower clock frequency (and voltage),
when compared to a higher decoding level. This scheme
does not rely on any specific hardware implementations of
the decoder, or on any coprocessors to implement specific
parts of the decoder. The significance of our work stems
from the fact that currently many consumer electronics
products are being built using general-purpose hardware
platforms, or architecture templates [10] (e.g. OMAP from
Texas Instruments and PrimeXsys from ARM). Hence,
increasingly there is a shift in focus towards appropriate
software-implementations of different functionalities,
rather than tailor-made hardware for different applications.
Many portable audio players (such as MP3 players) today
indeed used software decoders. It isalso easy to foreseethat
soon it would be common to use PDAs or mobile phones
(with powerful but general-purpose voltage and frequency
scalable processors) as portable audio/video players, by
running a suitable decoder application. Our solution will be
useful in a scenario like this, where hardwired audio/video
decoder chips implementing a specific codec will be of
limited use.

Related work: There exists alarge volume of recent work
on dynamically scaling the voltage and frequency of a
processor in response to the variable workload involved in
processing multimedia streams (see [1, 5, 6, 7] and the ref-
erencestherein). A second line of work proposes the use of
buffers to smooth out the burstiness in multimedia streams
and to decouple two architectural components having dif-
ferent processing rates. This enables periodically switch-
ing off the processor or running it at a lower frequency,
thereby saving energy [3, 8, 11]. A number of papers have
also addressed the problem of guaranteeing some Quality-
of-Service (QoS) requirement associated with multimedia
applications and at the same time minimizing the proces-
sor's energy consumption [14, 17]. Thisis again achieved
by using appropriate scheduling techniques. Our work in
this paper isfundamentally different from al the above pro-
posals and does not involve any kind of scheduling or dy-
namic power management strategy.

Recently, a scheme for exploring QoS versus energy
tradeoffs was presented in [12] for processing M PEG video
streams. With frame resolution as the QoS metric, thiswork
would enable a designer to evaluate potential energy sav-
ings by when video clips with different frame resolutions
are decoded. In Section 3 of this paper, we present a frame-

work that is used to compute the minimum processor fre-
guency required to support each of the decoding levelsin
our scheme. The computed frequency is then used to esti-
mate the energy consumption (or savings) associated with
each level. This framework has similar goals to the work
in [12]. However, thisis not the main contribution of this
paper. It only helpsin estimating the effectiveness of our
decoding scheme.

Our work has some similarities with the work in [15],
where a perception-based partial encryption scheme for
speech was presented. It is based on the observation that by
encrypting only about 30 — 40% of a bitstream, sufficient
content protection is achieved in wireless services. This
leads to energy savings resulting from lower computational
load on the processor. Although this basic idea is similar
to what we also exploit in this paper, none of the results
presented in [15] have any bearing with our work. Lastly,
the concept of partitioning the frequency range of a codec
based on perceptual relevance has aso recently been
exploited in [16] in the context of audio streaming over
a network. Again, athough we aso rely on this basic
idea of using perceptua relevance for prioritizing differ-
ent frequency ranges, our work applies this concept to a
very different problem, namely that of low-power decoding.

Organization of this paper: Although the basic scheme
that we described above can be applied to most existing au-
dio formats, for the remainder of this paper we will only
consider the MPEG 1 Layer 3, aso known as MP3, audio
format. The experimenta evaluations we have performed
were also based on MP3. The main reason for us to choose
MP3 is its widespread popularity. Additionally, compared
to a single-layer codec like MP3, scalable codecs such as
the MPEG 4 general audio usually incur a higher computa-
tional workload during the decoding process. This has been
an additional reason for usto choose MP3.

The rest of the paper is organized as follows. In the
next section we describe our perception-aware multi-level
decoding scheme based on the MP3 codec. We call the re-
sulting decoder the PL-M P3 (Perception-aware L ow-power
MP3) decoder. In Section 3 we very briefly introduce an
analytical framework to compute the minimum frequency
at which the processor should be run at each of the de-
coding levels. Details of this framework may be found in
an extended version of this paper [4]. The computed fre-
guency is then used to estimate the energy savings associ-
ated with Levels 1-3. It may be noted that although this
analytical framework is novel and also fairly involved, it is
not the primary contribution of this paper. It isonly usedin
conjunction with the proposed decoding schemein order to
accurately compute the minimum processor frequency and
hence maximize the energy savings. However, it turns out
that this analytical framework also provides insights into
the dependency between the minimum required processor

frequency and the playout delay (or initial buffering time).
Using this framework, in Section 4 we also show that up
to 20% energy savings may be obtained by increasing the
playout delay from 0.5 sec to 2 sec, even when a clip is
fully decoded (i.e. at Level 4). Hence, the total energy sav-
ings at any of the decoding levels is due to a combination
of partially decoding the frequency bandwidth and the play-
out delay chosen. Further, these two options may be chosen
independently of each other asillustrated in Figure 6 in Sec-
tion 4.

Our experimental evaluation of the proposed decoder in
presented in Section 4 using a processor model based on
the SimpleScalar instruction set simulator [2]. Finally, we
conclude in Section 5 by listing some directions for future
work.

2 ThePL-MP3 Decoder

In this section we first outline some of the motivations
behind the design of the PL-MP3 decoder. Thisisfollowed
by a description of this decoder and its differences with a
standard M P3 software decoder.

2.1 Perception-Awarenessin Audio Decoding
Perceptual characteristics of individual users. In
genera, the high frequency bands are perceptually less
important than the low frequency bands [13, 16]. There
is little perceptual degradation if we leave some high fre-
guency components un-decoded. A standard MP3 decoder
will ssimply decode everything in the bitstream without
considering the hearing ability of individua users with
or without hearing loss. This could result in a significant
amount of irrelevant computation, thereby wasting battery
power. The proposed PL-MP3 decoder overcomes this
problem by integrating an individual user’s own judgment
on the desired audio quality.

Listening environment: It is relatively rare for a portable
audio player to be used in a quite environment, for example
in the living room of one's home. It is far more common
to use portable audio players on the move and in a variety
of environments such as in a bus, train, or in a flight,
using simple earpieces. These differences have important
implications on the audio quality required. The PL-MP3
decoder enables the user to change the decoding profile to
adapt to the listening environment, while a standard MP3
decoder cannot.

Service types and signal characteristics: Different
applications and signals require different bandwidth. For
example, astorytelling audio clip requires significantly less
bandwidth compared to amusic clip. The PL-MP3 decoder
allows the user to choose an appropriate decoding profile
suitable for the particular service and signa type, in the
process a so prolonging the battery life.

To the best of our knowledge, the above observations have
not been exploited in any commercialy available audio

l Bitstream

Bitstream unpacking
Huffman decoding

i)

ot e spect

Joint stereo processing (if applicable)

oo0oo

Channel

stsy

&

L l[wegr

sISayjuis

aseyd£jod + Loawi
0 pueqq
| pueqqng

- |¢ pueqang L—

1ouuey? ybu ay} 1o}

Left channel audio data

Blocks of 576 samples

Level 1 Level 2 Level 3 Level 4

Figure 2: Block diagram of a standard MP3 decoder and the pro-
posed PL-MP3 multi-level decoding scheme.

players. The PL-MP3 audio decoder alows users to con-
trol the tradeoff between the battery life and the decoded
audio quality, with the knowledgethat sightly degraded au-
dio quality (this degradation may not even be perceptible to
the particular user) can significantly increase the battery life
of the player.

2.2 Decodingthe MP3 Bitstream

Like many other multimedia bitstreams, the MP3 bit-
stream has also a frame structure. A frame contains a
header, an optional CRC for error protection, a set of con-
trol bits coded as side information, followed by the main
data consisting of two granules which are the basic coding
unitsin MP3. For stereo audio, each granule contains data
for two channels. This data consists of the scale factors and
the Huffman coded spectral data. It is also possible to have
some ancillary data inserted at the end of each frame. The
decoder processes the MP3 bitstream frame by frame (or
granule by granule, if we look inside aframe).

The block diagram of a standard MP3 decoder [9] is
shown in Figure 2, along with our new PL-MP3 decod-
ing scheme. A standard MP3 decoder parses the bitstream,
decodes the side information first, and then runs several
signal processing modules to convert the MP3 bitstream
to pulse code modulation (PCM) audio samples. Three
modules which incur the most computational workload are
de-quantization, inverse modified discrete cosine transform
(IMDCT) and polyphase synthesis filterbank. The standard
decoder decodes the entire frequency band, which corre-

Right channel audio data
VBlocks of 576 samples

sponds to the highest computational workload. In the case
of PL-MP3, depending on the decoding level, the above
three modules (i.e. de-quantization, IMDCT and polyphase
synthesis filterbank) process only a partial frequency range
and thereby incur less computational cost. Due to space re-
strictions, we omit the technical details here. But the basic
intuition is as follows. On an abstract level, the decoder
processes a potentially infinite stream of dataitems or gran-
ules. Due to the real-time constraints imposed by the rate
at which the decoded granules are consumed by the output
device, alimited amount of time can be spent in processing
each granule (which determines the processor frequency).
At lower levels of decoding, by reducing the computational
cost associated with processing each granule, the processor
can be run at alower frequency, thereby saving power.

2.3 Workload Partitioning

Analyzing the MP3 decoding procedure reveals that af-
ter the bitstream unpacking and Huffman decoding modul e,
which require only a small percentage of the total computa-
tional workload (4% in our examples), the workload asso-
ciated with al the subsequent modules can be partitioned.
In principle, it is possible to design a scalable decoding
schemewith agranularity that correspondsto all the 32 sub-
bands defined in the MPEG 1 audio standard [9]. However,
for the sake of simplicity, we partitioned these 32 subbands
into only four groups, where each group corresponds to a
decoding level (see Figure 2 and Table 1).

As discussed in Section 1, the decoding Level 1 covers
the lowest frequency bandwidth (5.5 kHz) which we define
as the base layer. Although the base layer occupies only
a quarter of the total bandwidth and contributes to roughly
a quarter of the total computational workload, it is percep-
tually the most relevant frequency band. The output audio
quality corresponding to thislevel is certainly sufficient for
services like news and sports commentary. Level 2 covers
a bandwidth of 11 kHz and amost reaches the FM radio
quality, which is sufficiently good even for listening to mu-
sic clips, especially in noisy environments. Level 3 coversa
bandwidth of 16.5 kHz and produces an output that is very
close to CD quality. Finally, Level 4 corresponds to the
standard MP3 decoder, which decodes the full bandwidth
of 22 kHz. Levels 1, 2 and 3 therefore process only a part
of the datarepresenting the different frequency components,
whereas Level 4 processes all the data and is therefore com-
putationally most expensive. Accordingto our experiments,
the audio quality corresponding to levels 3 and 4 are almost
indistinguishable in noisy environments, but are associated
with substantially different rates of energy consumption.

3 Processor Frequency Computation
In this section we very briefly outline how to compute

the minimum operating frequency of a processor in order to
run our decoding algorithm at any particular decoding level
(details may be found in [4]). The computed frequency can

input audio
bit stream

o]

Figure 3: System model.

then be used to estimate the power consumption due to the
processor. Our system model is shown in Figure 3. The
processor running the decoder application has an internal
buffer b. The decoded audio stream, which is a sequence
of PCM samples, is written into a playout buffer B. This
playout buffer is read by the output audio device at some
specified rate.

Theinput (constant rate) bitstream to be decoded is made
up of a sequence of granules. The number of PCM samples
per granule is a constant. Hence, for our analysis, we may
consider that the playout buffer is read out by the output
device at a constant rate expressed in terms of number of
granules per second. The frequency at which the processor
needs to be run is therefore determined by (i) the number
of granulesthat need to be processed per second, in order to
sustain the playout rate, and (ii) the number of processor cy-
clesrequired to process each granule. There are two factors
that make this frequency computation difficult. (i) The num-
ber of bits constituting agranulein the M P3 frame structure
is variable. We have observed that the maximum number
of bits per granule can almost be three times the minimum
number of bits in a granule (where this minimum number
is around 1200 hits). (ii) The number of processor cycles
required to process each granuleis also variable. Figure 4
shows the processor cycle requirement per granule, corre-
sponding to a 160 kbits/sec bitrate audio clip, for aduration
of around 30 secs. Thisfigure shows the processor cyclere-
quirement corresponding to the four decoding levels of our
PL-MP3 decoder. In a nutshell, our analytical framework
takes into account both these variabilities while computing
the minimum processor frequency required to sustain each
of the decoding levels. The same framework can also be
used to compute the buffer size requirements for each of
these levels.

4 Experimental Evaluation

We evaluated our decoder using two different classes of
audio clips, those having a bitrate of 160 kbits/sec and the
other class having a bitrate of 128 kbits/sec. In the for-
mer class, the average number of bits per granule is higher
compared to the latter class. Our processor model (see Fig-
ure 3) was based on a Sim-Profile configuration of the Sim-
pleScalar instruction set simulator [2]. Since we envisage
that the proposed decoder will be run on a general purpose
processor (such asthoseexistinginaPDA, e.g. anIntel XS
cale 400MHz processor), we choose our processor to be a
RISC processor (similar to a MIPS3000 processor) without
any MP3 specific instructions.

We implemented the PL-MP3 decoder by modifying the
original MP3 decoder source code availablefrom the Fraun-

N

level 4 (full decoding)

it IR

o

cycles required for each granule

15
level 1

1
0 500 1000 1500 2000 2500

granule index
Figure 4: Variation in the processor cycle requirement per gran-

ule, for the different decoding levels.
x 10°

cycles required within any interval of length t

0 2‘0 4‘0 f;O 8‘0 l(SO 120 14‘10 léO léO 200
t (seconds x 10'1)

Figure 5: Cumulative processor cycle requirements versus time,

corresponding to the different decoding levels for the high bitrate

classof clips, with playback delay equal to 0.5 secs. Slope of these

linesis equal to the processor frequency required.

hofer 11S website (also available from www . mpeg . org).
All the audio clips we used had a sampling frequency of
44.1K PCM samples/sec per channel, which correspondsto
CD quality audio. We experimented with three different
playback delay values, equal to 0.5, 1 and 2 secs.

We simulated the decoding of several audio clips of du-
ration 20 sec. From each such simulation, we collected
five different traces. (i) the number of bits per granule, and
(ii)-(v) the number of processor cycles required to process
each granule for each of the four different decoding levels.
From a collection of such traces, corresponding to a col-
lection of audio clips, we computed the minimum proces-
sor frequency required for supporting each of the four de-
coding levels (see [4] for details). This procedure was im-
plemented in Matlab (www . mathworks.com). Figure 5
shows the cumulative processor cycle reguirements versus
time. Hence, the dope of each of these lines represents
the processor frequency corresponding to the different fre-
guency levels. The minimum required frequency clearly in-
creases asthedecodinglevel isincreased. Table 2 liststhese

Playback | Level 4 Level 3 Level 2 Level 1
delay

0.5 sec 302 MHz | 246 MHz | 178 MHz | 111 MHz
1.0sec 294 MHz | 239 MHz | 174 MHz | 108 MHz
2.0sec 279 MHz | 227 MHz | 165 MHz | 102 MHz

Table 2: The minimum clock frequency at which the processor
needs to be run for four different levels of decoding and for three
different playback delays.

1
0.9
0.8
0.7
0.6

0.5 m0.5 sec
0.4 W 1sec
02 sec

0.3
0.2
0.1+

Normalized Energy Consumption

Level 4 Level 3 Level2 Level 1
Decoding Levels

Figure 6: Normalized energy consumption for three different
playback delays and the four decoding levels.

minimum required frequency values for the three different
playback delay values, for the high bitrate class of clips.
We obtained almost identical resultsfor the low bitrate (128
kbits/sec) class of clipsaswell.

As the playback delay was increased from 0.5 sec to
1 and 2 secs, the minimum required frequency decreased
for al the decoding levels. This is because the increased
buffering time allows some of the burstinessin the workload
(due to the variability in the number of processor cyclesre-
quired to process the different granules) to be smoothened
out. Figure 6 shows the normalized energy consumption for
the high bitrate class of clips, for the four different decoding
levelsand the three different playback delay values. Clearly,
the decoding level 4 aong with a playback delay equal to
0.5 secs consumes the highest amount of energy. Compared
to this base case, when an audio clip was decoded at level 1
with a playback delay of 2 secs, we computed an estimate
of 95% savings in the energy consumed by the processor.

It may be noted that the results shown in Figure 6 do not
take into account the static and dynamic power consumed
by the buffer memory. It only shows the power consumed
by the processor. Thetotal buffer requirement, i.e. the size
of theinternal plusthe playout buffer, increases as the play-
back delay isincreased (see [4]). As a result, the effective
energy savings resulting from increasing the playout delay
would be slightly less than whose reported in Figure 6.

As mentioned before, the main result of this paper isthe
multi-level decoding scheme and an illustration of the po-
tential energy savings that may be obtained from it. It is
now fairly common knowledge that buffering can be used
to smooth out the variability in multimedia workloads and
this can be exploited to run aprocessor at alower frequency,

thereby saving energy. However, Figure 6 showsthat the en-
ergy savings that can be achieved by using our multi-level
decoding scheme is significantly larger than those that may
be obtained using buffering alone. For example, using the
standard M P3 decoder (i.e. Level 4), by increasing the play-
out delay from 0.5 to 2 secs, around 20% savings may be
obtained. In contrast to this, more than 95% savings may
be obtained by switching to Level 1 (albeit at the cost of
a small sacrifice in the output quality) with a playout de-
lay set to 0.5 sec. This difference will become even more
pronounced if the power consumed by the buffersis taken
into account (which we have neglected for the sake of sim-
plicity). Clearly, the maximum savings may be obtained by
using a combination of both.

Two sample MP3 audio clips that were decoded using
the four decoding levels (Levels 1 — 4) may be downloaded
from[4]. The decoded PCM samples corresponding to each
of the decoding levels were saved in WAV format and can be
played using practically any media player, such as Winamp
(www .winamp.com). These wav files will illustrate the
output quality associated with each of the four decoding lev-
els(seeaso Table 1).

5 Concluding Remarks

In this paper we presented a novel software audio de-
coder that allows the user to choose an output quality level.
By making a small sacrifice in the output quality, it is pos-
sible to significantly enhance the battery life of a device
running this decoder. Although the basic idea behind this
decoder is intuitively simple, this observation is currently
not exploited in any commercialy available audio player.
We are also not aware of any publication which system-
aticaly studied this option. We would like to point out
that this scheme is conceptually similar to the “long-play”
(LP) recording option available in some high-end DVD
recorders. However, such a feature is implemented at the
encoder side and the recorded data can only be played out
a afixed quality level. Our scheme is implemented at the
decoder side and allows playout at multiple quality levels.

The scheme presented in this paper can be extended in
several directions. In its current implementation, the orig-
ina audio bitstream is not modified in any way. However,
only a part of this bitstream is decoded and the rest is ig-
nored. One possible improvement is to perform afast com-
pressed domain transcoding to remove parts of the bitstream
that will not be decoded. The resulting bitstream will oc-
cupy less memory space. However, there will be less flexi-
bility in controlling the output quality.

Currently our multi-level scheme is only based on par-
titioning the frequency bandwidth. In the case of multi-
channel encoding schemes it should also be possible to ex-
ploit the correlation between different channels to further
reduce the computational workload involved in the decod-

ing process. Additionally, it should also be possible to split
the frequency bandwidth into more than four groups to al-
low afiner control on the output quality.

References

[1] A.Acquaviva, L. Benini, and B. Ricco. Software-controlled
processor speed setting for low-power streaming multime-
dia. |EEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 20(11), November 2001.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An in-
frastructure for computer system modeling. |EEE Com-
puter, 35(2):59-67, 2002.

[3] L. Ca and Y.-H. Lu. Dynamic power management using
data buffers. In DATE, 2004.

[4] A perception-aware low-power software audio decoder for
portable devices.
http://www.comp.nus.edu.sg/"samarjit/pl-mp3/.

[5] K. Choai, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-
based dynamic voltage and frequency scaling for a MPEG
decoder. In ICCAD, 2002.

[6] K. Choi, R. Soma, and M. Pedram. Off-chip latency-driven
dynamic voltage and frequency scaling for an mpeg decod-
ing. In DAC, 2004.

[7] C. Huges, J. Srinivasan, and S. Adve. Saving energy with
architectural and frequency adaptations for multimedia ap-
plications. In 34th Annual International Symposium on Mi-
croarchitecture (MICRO), 2001.

[8] C.Im, S. Ha, and H. Kim. Dynamic voltage scheduling
with buffers for low-power multimedia applications. ACM
Transactions on Embedded Computing Systems, 3(4):686—
705, 2004.

[9] ISO/IEC 11172-3, Coding of moving pictures and associ-
ated audio for digital storage mediaat up to about 1.5 Mbit/s,
1993.

[10] K. Keutzer, S. Malik, A. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: Orthog-
onalization of concerns and platform-based design. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 19(12), December 2000.

[11] Y.-H.Lu, L. Benini, and G. D. Micheli. Dynamic frequency
scaling with buffer insertation for mixed workloads. 1EEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 21(11), November 2002.

[12] M. Mesarina and Y. Turner. Reduced energy decoding of
mpeg streams. Multimedia Systems, 9(2):202-213, 2003.

[13] T.Mock. Music everywhere. |EEE Spectrum, Sep 2004.

[14] G. Qu and M. Potkonjak. Energy minimization with guar-
anteed quality of service. In ISLPED, 2000.

[15] A. Servetti and J. D. Martin. Perception-based partial en-
cryption of compressed speech. |EEE Transactions on
Soeech and Audio Processing, 10(8), November 2002.

[16] Y. Wang, W. Huang, and J. Korhonen. A framework for
robust and scalable audio streaming. In ACM Multimedia,
2004.

[17] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. In 19th
ACM Symposium on Operating Systems Principles (SOSP),
2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Helvetica
 /Helvetica-Bold
 /Times-Bold
 /Times-Italic
 /Times-Roman
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

