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ABSTRACT
We propose a novel technique for the automatic classifica-
tion of vocal and non-vocal regions in an acoustic musical
signal. Our technique uses a combination of harmonic con-
tent attenuation using higher level musical knowledge of key
followed by sub-band energy processing to obtain features
from the musical audio signal. We employ a Multi-Model
Hidden Markov Model (MM-HMM) classifier for vocal and
non-vocal classification that utilizes song structure informa-
tion to create multiple models as opposed to conventional
HMM training methods that employ only one model for
each class. A statistical hypothesis testing approach fol-
lowed by an automatic bootstrapping process is employed
to further improve the accuracy of classification. An exper-
imental evaluation on a database of 20 popular songs shows
the validity of the proposed approach with an average clas-
sification accuracy of 86.7%

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing - Methodologies and Techniques; H.3.1
[Information Storage and Retrieval]: Content Analy-
sis and Indexing

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
The singing voice is one of the most important character-

istics of music [13]. With the immense and growing body of
music data, information on the singing voice could be used
as a valuable tool for the automatic analysis of song content
in the field of music information retrieval and many other
applications. The problem of singing voice detection can be
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stated as follows: for a given song, classify each segment as
being of either the pure instrumental type (referred to as a
non-vocal segment in the rest of this paper) or as a mixture
of vocals with/without background instrumental (referred
to as the vocal segment in the rest of this paper).

In [2], Berenzweig and Ellis used Posterior Probability
Features (PPF) obtained from the acoustic classifier of a
general-purpose speech recognizer to derive a variety of statis-
tics and models which allowed them to train a vocal detec-
tion system. In [3], Berenzweig et al. used a multi-layer
perceptron (MLP) neural network to segment songs into vo-
cal and non-vocal regions using perceptual linear prediction
(PLP) coefficients based features. Tzanetakis [13] devel-
oped a technique to detect the presence of singing voice us-
ing a bootstrapping process that trains a different classifier
for each song. This technique is semi-automated requir-
ing a small random sampling of every song to be annotated
by the user for training. Zhang [15] used the features of
energy, average zero-crossing rate (ZCR), harmonic coeffi-
cient and spectral flux computed at regular intervals and
compared with a set of predetermined thresholds to detect
the start of the singing voice. Chou and Gu [4] have pro-
posed a technique using a combination of harmonic coef-
ficient based features, conventional Mel-frequency Cepstral
Coefficients (MFCC) and log energy features in a GMM-
based Speech/Music Discriminator (SMD) system to detect
the singing voice. Kim and Whitman [6] have proposed a
technique to detect the singing voice based on an analysis
of the energy within the frequencies bounded by the range
of vocal energy. This has been achieved using a combina-
tion of an IIR filter and an inverse comb filter bank. In [8],
Maddage et al. have developed an SVM based classification
approach to detect singing voice using the musical audio fea-
tures of Linear Prediction Coefficients (LPC), LPC derived
cepstrum (LPCC), MFCC, spectral power (SP), short time
energy (STE) and ZCR. In [7], Maddage et al. have pro-
posed a Twice-Iterated Composite Fourier Transform (TIC-
FT) technique to detect the singing voice boundaries by
showing that the cumulative TICFT energy in the lower co-
efficients is capable of differentiating the harmonic structure
of vocal and instrumental music in higher octaves.

The technique presented in this paper is based on the ob-
servation that popular songs usually have a structure com-
prising of intro, verse, chorus, bridge and outro, and differ-
ent sections display differences in characteristics [14]. There-
fore, statistical models of vocal and non-vocal classes should
be built based on the structure of the song. Towards this



end, we employ a multi-model-HMM (MM-HMM) training
approach to tackle the intra-song and inter-song variations
for improved vocal and non-vocal classification performance.
This is followed by a statistical hypothesis testing method
and bootstrapping technique to further increase accuracy.
This proposed technique uses acoustic features which are a
combination of harmonic content attenuation using higher
level musical knowledge of key followed by sub-band energy
processing that we have found suitable to distinguish vocal
and non-vocal signals.

We assume the meter to be 4/4, this being the most fre-
quent meter of popular songs and the tempo of the input
song is assumed to be constrained between 40-185 beats per
minute (BPM) and almost constant. The audio signal is
framed into beat-length segments to extract metadata in
the form of quarter note detection of the music [11]. The
basis for this technique of audio framing is that within the
quarter note, the harmonic structure of the music can be
considered as quasi-stationary. This is based on the premise
that musical changes are more likely to occur on beat times
in accordance with the rhythm structure than on other posi-
tions. For a comprehensive description of each segment, we
extract acoustic features at 20 ms frame length intervals (13
ms frame overlap) within the inter-beat interval and group
all of these together. Each frame is multiplied with a ham-
ming window to minimize signal discontinuities at its ends.

The rest of this paper is organized as follows. The pro-
cess of feature extraction from the audio signal is presented
in Section 2. Details of the classifier formulation which in-
cludes the MM-HMM classifier, the classification decision
verification using statistical hypothesis testing and the boot-
strapping process is discussed in Section 3. We present the
empirical evaluation of our approach in Section 4. Section
5 concludes the paper.

2. ACOUSTIC FEATURES
Both, musical instrument sounds and the human singing

voice are rich in harmonic content. However, we observe that
the sound signals produced by instruments have more reg-
ular harmonic patterns compared to the singing voice. Fig-
ures 1(a) and 2(a) show the frequency content of non-vocal
and vocal signals respectively for the first 1 kHz of audible
range. A more regular harmonic pattern is observed for non-
vocal signals as compared to the vocal signals. Therefore,
we use the technique of harmonic content attenuation in our
approach to be able to distinguish better between vocal and
non-vocal regions. Further, the spectral characteristics of
vocal and non-vocal segments are different. If vocals begin
while instrumental is going on, a sudden increase in the en-
ergy level of the audio signal is observed [15]. Thus, we fol-
low up our harmonic attenuation with an analysis of energy
distribution in different frequency bands. We shall now dis-
cuss the implementation of harmonic attenuation followed
by energy analysis.

2.1 Harmonic Attenuation
In [11], we have demonstrated a system to determine the

key of acoustical musical signals. The key defines the dia-
tonic scale that a piece of music uses. The diatonic scale is
a seven note scale and is more familiar as the Major/Minor
scale in music. Since every song is in a certain key, we
use this information to attenuate only those harmonic pat-
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Figure 1: (a)Non-vocal signal in frequency domain
(b) Frequency response of triangular bandpass fil-
ter (c) Non-Vocal signal after attenuating harmonic
content
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Figure 2: (a)Vocal signal in frequency domain (b)
Frequency response of triangular bandpass filter (c)
Vocal signal after attenuating harmonic content

terns originating from the pitch notes in the key. To reduce
the complexity in implementation, we have used triangular
bandpass filters. This filter has the highest attenuation of
the signals at regular harmonic frequencies and the least at-
tenuation of the signals at irregular harmonic frequencies
(those that are highly deviated from regular harmonic fre-
quency locations). The more the deviation occurs, the less
the signal is attenuated. After attenuation, non-vocal sig-
nals have lower energy content than vocal signals as shown
in Figures 1(c) and 2(c) respectively.

2.2 Energy Distribution Analysis
After attenuating the harmonic content, each audio frame

is passed through bandpass filters spaced logarithmically
from 130 Hz to 16 kHz. Sub-band based Harmonic Attenu-
ated Log Frequency Power Coefficients (HA-LFPC) are then
computed using Equations (1) and (2) which we have defined
previously for LFPC calculation in [9].

St(m) =

fm+ bm
2∑

k=fm− bm
2

Xt(k)2, m = 1...12 (1)

where, Xt(k) is the kth spectral component of the signal, t is



the frame number, St(m) is the output of the mth subband,
and fm and bm are the center frequency and bandwidth of
the mth subband respectively. The HA-LFPC parameters
which provide an indication of energy distribution among
subbands are calculated as follows:

HA− LFPCt(m) = 10log10[
St(m)

Nm
] (2)

where Nm is the number of spectral components in the
mth subband. For each frame, 12 HA-LFPCs are obtained.
Figure 3 shows the energy distribution obtained using HA-
LFPC for 90 second vocal and non-vocal segments extracted
from six different songs.
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Figure 3: Energy distribution for vocal/non-vocal
segments using HA-LFPC over 12 subband filters

The figure shows that the vocal segments have relatively
higher energy values in the higher frequency bands as com-
pared to the non-vocal segments. Therefore, HA-LFPC is
an effective feature for the discrimination of vocal and non-
vocal segments in subsequent steps.

3. CLASSIFER FORMULATION

3.1 Multi-Model HMM Classifier
Most studies on vocals detection use statistical pattern

classifiers [2, 3, 13]. However, to our knowledge, none of the
studies takes into account song structure information in song
modeling. An important observation is that vocal and non-
vocal segments display variation in intra-song signal charac-
teristics. For example, signal strengths in different sections
(intro, verse, chorus, bridge and outro) are usually different.
In our observation, for most songs, the signal strength of
the intro is relatively low compared to that of the verse or
the chorus. Chorus sections are usually of stronger signal
strength in comparison with the verse and bridge sections
since they have a “fuller” musical arrangement with busier
drums, some additional percussion, a fuller string arrange-
ment and additional melody lines [14]. The outro section
might repeat a vocal phrase from the chorus and it usually
ends with a fade-out. Sample waveforms extracted from dif-
ferent sections of a popular song are depicted in Figure 4.

Tempo and loudness are important attributes accounting
for inter-song variation. Therefore, we integrate the song
structure, inter-song and intra-song variation into our mod-
els. The training data (vocal or non-vocal segments) are
manually classified based on three parameters - the section
type (intro, verse, chorus, bridge and outro), tempo and
loudness, and a model is created for each class as shown in
Figure 5. In our current implementation, we use 40 models
- 20 each for modelling vocal and non-vocal segments. This
process results in multiple HMM models for each vocal and
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Figure 4: Waveforms of 10 second segments ex-
tracted from (a)Intro (b)Verse (c)Chorus (d)Bridge
(e)Outro/ending of the song 25 Minutes by MLTR
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Figure 5: Multiple HMM models for each vocal and
non-vocal class

non-vocal class. Several models for each class form an HMM
model space, to allow more accurate modeling in comparison
to the single-model baseline.

3.2 Classification Decision Verification
The test song is segmented using the above mentioned

MM-HMM classifier. However, some of the vocal and non-
vocal segments might be wrongly classified. Therefore, in
this step, we evaluate the reliability of the classification de-
cision. The most effective way to measure the confidence
of the classification decision is based on how much the clas-
sification decision significantly overtakes the other possible
competitors. We use the neighborhood information in HMM
model space discussed in [5] to determine the properties
of the possible competing source distribution of the target
model. Hypothesis test [12] is then performed for each seg-
ment of audio to obtain a confidence score for its current
classification as obtained from the MM-HMM. This confi-
dence score is compared with a predetermined threshold to
retain only the frames that have a high confidence of being
classified as either vocal or non-vocal segments.

3.3 Bootstrapping Process
The frames with high confidence score that are retained in

the previous step, are used to build song-specific vocal and
non-vocal models of the test song with a bootstrapping pro-
cess [13] to further improve accuracy. This process allows
us to use a song’s own model for classification as shown in
Figure 6. The bootstrapping process makes the algorithm
adaptive and capable of achieving high vocal detection ac-
curacy.
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Figure 6: Bootstrapped training and segmentation

4. EXPERIMENTS
Our experimental database includes 20 popular songs, care-

fully selected for their variety in artist and time spans. Of
these, 6 songs are allocated to the training dataset and the
remaining 14 songs to the test dataset. There is no over-
lap between the two datasets. We use the continuous den-
sity HMM with four states and two Gaussian mixtures per
state for all HMM models in all our experiments. The stan-
dard procedures for HMM training and classification are well
documented in [10]. Using the training database, the MM-
HMM classifier is trained to obtain several variants of the
vocal and non-vocal HMM models which are shown in Fig-
ure 5. The results of our analysis are tabulated in Table 1
below. To compare the vocal detection performance of HA-
LFPC features with traditional features, experiments are
conducted using simple LFPC (without harmonic attenua-
tion) [9], MFCC [1] and LPCC [10].

Table 1: Experimental Results (% accuracy)

MM-HMM Bootstrapped HMM

Feature Non Vocal Avg Non Vocal Avg
Vocal Vocal

HA-LFPC 80.5 85.8 83.1 79.2 94.1 86.7
LFPC 81.2 83.2 82.2 78.2 91.9 85.1
MFCC 79.3 77.5 78.4 77.2 85.4 81.3
LPCC 75.6 78.9 77.3 73.4 86.6 80.0

It can be seen that the HA-LFPC feature, with an aver-
age accuracy of 86.7%, outperforms all the traditional fea-
tures. The usage of the bootstrapping technique gives us
a 3.6% increase in performance (83.1% to 86.7%) over the
MM-HMM. It is observed that performing the harmonic at-
tenuation gives 1.6% improvement in performance over sim-
ple LFPC (85.1% to 86.7%). Next, we investigate the ef-
fectiveness of employing song structure information in song
modeling. We compare the performance of the MM-HMM
against the baseline HMM training method in which only
one model is created for each vocal and non-vocal class with
no regard for song structure information. The results pre-
sented in Table 2 show that the MM-HMM training method
outperforms the baseline HMM training approach by 3%
(80.1% to 83.1%).

Table 2: Performance comparison between Baseline
HMM and MM-HMM (% accuracy)

Baseline HMM MM-HMM

Feature Non Vocal Avg Non Vocal Avg
Vocal Vocal

HA-LFPC 77.6 82.6 80.1 80.5 85.8 83.1

5. CONCLUSION
We have presented an automatic approach for detecting

vocal segments in a song. Using a combination of harmonic

attenuation based on musical knowledge of key, MM-HMM,
hypothesis testing and bootstrapping, our system is able to
garner a net performance of 86.7% accuracy in vocal/non-
vocal classification. One drawback of this framework is that
it is computationally expensive since it entails two train-
ing steps: training the MM-HMM classifier and the boot-
strapped classifier. To reduce the computational complex-
ity, we could discard bootstrapping process in favor of using
a more powerful hypothesis testing approach proposed in [5]
instead. The current hypothesis testing method [12] removes
a few correctly labeled segments in addition to the wrongly
labeled segments. We believe that the alternate hypothesis
testing method would overcome this problem. We could also
consider an implementation using mixture modeling or clas-
sifiers such as neural networks or support vector machines.
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