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This paper presents a novel parametric vector quantization
(PVQ) scheme as the secondary encoding to code perceptually
salient percussive sounds such as drums in the time domain. It is
deployed to improve the quality of service in the case of packet
losses during percussive events. As a generalization and an
improvement of our earlier system, the new scheme can achieve
a better balance between bandwidth efficiency and error
robustness. The proposed coding technique has been
implemented with the MPEG-2 AAC (Advanced Audio Coding)
frame structure. Experimental results with music samples have
shown the effectiveness of the proposed scheme.
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Error concealment is usually a receiver-based error recovery
method, which serves as an important part in mitigating the
degradation of audio quality when data packets are lost in audio
streaming over error prone channels such as mobile Internet. A
fundamental limitation of all conventional methods is the
assumption of short-term similarity of audio signals.  This
assumption is not always valid, especially in the case of
transients in music.

To overcome the above-mentioned limitation, we have
developed a drumbeat pattern based active error concealment
method [1] for streaming music, which frequently has percussive
objects such as drums to maintain the beat.

The main idea of our previous work was to recover musical
beat structures in the case of packet losses, a concept analogous
to pitch prediction (also referred to as long term prediction) in
speech coding, since beat structures are essential to the
perception of most music. It performed quite nicely when a
music signal has a strongly metered beat structure.

However, further research revealed that our previous method
still has some serious limitations. First, although it is fairly
common that music, especially pop music exhibits a beat
structure with strong regular accents, this assumption cannot be
generalized. Our previous method fails if the drum pattern does
not obey the above assumption or it changes abruptly, which is
often the case in real-life music. Replacing a bass drum with a
snare drum or other percussive sound is generally not acceptable
in high quality audio. Second, musical beat information ���� ��
cannot guarantee the perceptual similarity of the two audio
segments on the beats. Thus, the computations on the musical
beat detection are largely irrelevant for the purpose of error
concealment. The main concern in this type of error concealment

should be drumbeats (the physical sound), not musical beats (a
perceptual entity that can exist without any sound). Third, the
time resolution of an AAC frame is not sufficient for detecting
transients according to psychoacoustics [2]. This was one reason
behind the failure of our early system to eliminate so-called
����
����������������� [1]. Fourth, in order to solve the �
����
������ �
������ problem [3], we were forced to increase
memory consumption in the decoder to save the same class of
frequency data by a factor of four. To overcome these
limitations, we propose a more general scheme for coding the
percussive sounds, which may or may not correspond to the
musical beats. This scheme can be considered as an extension to
our earlier system [1].

The rationale to add secondary encoding for better protection
of percussive sounds in music can be justified from two
perspectives. From musicological viewpoint, percussions are
often used to maintain the musical beats in a piece of music,
which is one of the clearest features of the music to both
musicians and non-musicians [4]. From an information theory
viewpoint, a percussive signal produced by a beat instrument
generally has greater perceptual entropy (PE) [5]. This
phenomenon was vividly verified with the Huffman bits
fluctuation in a piece of pop music [6].
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In this section, we focus on the three major steps in the proposed
scheme: detection of percussive sounds, clustering of percussive
sounds and generation of a codebook for percussive sound
clusters.
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Figure 1. Percussion clustering conceptualization

The general conceptual framework of the proposed method is
illustrated in Figure 1. The parametric vector quantization (PVQ)
is implemented by employing an MPEG-2 AAC frame structure.
In the encoder side, we first detect all perceptually salient
percussive sounds in a piece of music off-line, and then employ
the PVQ to cluster them into a few classes, such as bass drum,
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snare drum, hi-hat, or their combinations based on their
perceptual similarity. The parameters of the secondary encoding
(i.e., VQ indices) are subsequently embedded into the AAC
bitstream as ancillary data, similar to the system in [1]. The
flowchart is illustrated in Figure 2.
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Figure 2. Flowchart of percussion detection and clustering

The codebook (the representatives of all the clusters) is
transmitted in advance to fill the receiver’s percussion buffers
before the actual streaming begins. The PVQ bitstream
(codebook and codebook index) is used to reconstruct the
percussive sound, and the neighboring frames are used to
reconstruct the stationary part of the lost frame, as illustrated in
Figure 3.
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Figure 3. Reconstruction of percussive sound in the decoder.
The dashed rectangle represents the missing AAC frame. The
triangle represents the percussion from the codebook.

����	����������	� �!"	"�#��#� !

We use a subband approach, similar to [3], to perform onset
detection with a time resolution defined by the short window
(256 PCM samples) within an AAC frame (2048 PCM samples)
[7]. In general, a percept of an onset is caused by a noticeable
change in intensity, pitch and timbre of the sound [8]. Our onset
detector is based on the subband intensity alone, since a
perceptually salient percussive event is usually accompanied by
an intensity surge at least in one subband.

The onset detection part is illustrated in Figure 4. Although
the general structure of our onset detector is similar to that in
[9], there are some fundamental differences in them.

The subband energy slope (first order difference function) is
calculated first as the preliminary feature, followed by a
halfwave rectifier. To prevent excessive fluctuation of the

preliminary feature due to the increased time resolution, a
smoothing function is introduced by simply summing previous
feature values over a fixed time window, which is similar to the
temporal energy integration of the human auditory system.
Unlike a fixed threshold proposed in [9], we apply a novel
adaptive threshold in all subbands to select possible candidates.
In each subband we pick up only the maximum of all local
maxima above the threshold within a pre-defined time window.

Subband
energy slope
(first order
difference
function)

Smoothing
function
(summation of
subband energy
slope over time)

Pick up the
maximum of
local maxima
in a frame

Threshold
Halfwave
rectification

Figure 4. Block diagram of subband processing for onset
detection

Another fundamental difference between our onset detector
and that of [9] is that we simply use the smoothed subband
energy slope instead of the so-called �
���� ������ ��
��
��
�
�������
�
� �����
�� proposed in [9]. The reason for us to
dismiss the logarithm operation in the calculation of the �
���
������ ��
��
��� �
�������
�
� �����
�� is its poor performance in
reliable onset detection.

In order to detect an onset component, we need a feature,
which can separate an onset and others as much as possible. The
smoothed first order difference function (feature) combined with
the proposed adaptive threshold can detect onsets reliably.
However, if a logarithm operation is applied to the feature, its
dynamic range will be compressed, thus making the onset
detection much more difficult.

Our new adaptive threshold in each subband is calculated
based on the smoothed first order difference function (feature):

 �!"
WKU

+⋅= ,

where ! is derived from the variance of the feature and ! is
set as a constant in our current implementation, � is the local
mean of the feature over a duration of 301 short windows (ca.
900 ms) excluding the middle 5 short windows,   is a constant,
which is based on large training data statistics.   indicates the
minimum detectable changes in each subband.

It is very common that the onset positions detected from
different subbands are not consistent. The final position of the
onset is a weighted mean of onset candidates from different
subbands.

We have introduced a confidence score to indicate how pure
(without mixing with other sounds such as singing-voice) is the
detected percussion.

V

WKUV

V "
""

#
−= ,

where 
V
# is the confidence score of the percussion in an

individual subband �, 
V
"  is the feature value of the percussion in

the subband.
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where 
L
#  is the overall confidence score of the percussion in

the frame 
, $ is the number of subbands. 
V
�  is the weighting

factor and 1
1
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V

V
� . The selection principle of 

V
�  is the same

as that in [3]. That is, we put more weight to the low and high
frequency range, where the main energy of the percussion is
presented.
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After the pre-processing, all percussive sounds are detected and
their positions indexed. For the purpose of percussion clustering,
it can be advantageous to employ a new set of FV based on short
window spectral data with uniform window shape, either sine or
Kaiser-Bessel derived (KBD) window as defined in MPEG AAC
standard. The frequency resolution of our method is then limited
by the short window length of AAC.
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The duration of percussive sounds is estimated using the energy
contour of the detected percussions.

The input to the clustering process is a set of multi-
dimensional feature vectors (FVs). For a compact description of
percussions, a 12-dimensional FV is used in our current
implementation, which is different from [10]. The 12-
dimensional FV includes 3 fullband features (
%�% the fullband
peak energy, confidence score calculated in the onset detection
module, bandwidth calculated the same way as in [11]) and 3x3
subband features. For the feature extraction, we employed 3
subbands that are in the frequency ranges of 0-172 Hz, 172-344
Hz and 11025 - 22050 Hz, respectively. Two features are
dedicated to the low subband energy and the third feature is
dedicated to the high subband energy. This is to describe the
frequency domain characteristics of the percussion.

The fullband peak energy and confidence score roughly
describe the onset characteristics of a percussive event, and the
bandwidth describes the bandwidth characteristics of the event.
The subband features describe a signal of 15 short windows in
duration starting from the onset. The 15-short-windows signal is
converted into 3 sets of subband features; each set represents 5
consecutive short windows. This is used to describe the decay
characteristics of the percussion.

This 12-dimentional vector of features worked quite well
with our test signals. However, it is possible to further optimize
the features. Possible improvements include introducing a
weighting factor for each feature according to its perceptual
significance, including more features such as spectral flatness.

+��,
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This module is used to train the preliminary codebook. A well-
known method of obtaining the VQ codebook is the generalized
Lloyd algorithm (GLA) [12].

The GLA algorithm is sometimes referred to as the Linde-
Buzo-Gray (LBG) algorithm. Given a codebook, the VQ

encoding process is the minimum-distortion quantization of an
input vector, under a certain distance measure. This means
finding the nearest neighborhood in the codebook, which
requires vector distance computations using the exhaustive
search of the codebook.

Intuitively, the VQ codebook size should be the number of
musical instruments and their combinations used in a piece of
music. It is rather difficult to determine the right size of
codebook since the number of percussive instruments in a piece
of music is unknown. However, the intention of PVQ is not to
separate percussions produced by different music instruments
but to cluster them into a number of artificial classes based on
perceptual similarity measurement. Using an EM (Expectation
maximization)-Based algorithm, the total average-distortion of
VQ will decrease monotonically when the size of codebook
increases. That is, the larger the codebook size, the more
accurate representation the codebook for the FV space.

However, using an unnecessarily large codebook requires
time-consuming codebook training and more bits for coding the
codebook and codeword index. Our experiments have shown
that 8 clusters are sufficient for most of our test music signals.
Even 4 clusters can be satisfactory for a majority of music
samples. The percussive events within each class are
perceptually similar.

��/�	����������	� "�0  1	��$��#� !

The proposed PVQ can be considered as a particular
implementation of the concept proposed in [13] and an improved
version of the scheme proposed in [6].

Since the percussive codebook contains the representations
of all clusters, it has to be chosen carefully. Our codebook is not
constructed simply based on the centroid of each class, but based
on the following criterion:

( )
N

''

#�
WKUN ≤

= maxarg ,

where 
WKU

&  is the threshold distance for each class. A

member with confidence 
N
#  in class �� whose distance (

N
& ) to

its centroid is beyond 
WKU

& , cannot be selected for the codebook.

The member within 
WKU

&  that has the maximum confidence

score, is chosen for the codebook to represent class �%
The rationale for the above criterion is that members that are

too far from the centroid should not be included in the
codebook, and those heavily contaminated with other sustaining
sounds such as singing-voice (
%�% the confidence is low) should
also be excluded from the percussive codebook.
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In the networked world, users will soon be able to search
through vast databases at the song level [14]. Based on this
assumption, the pre-processing and PVQ of our system is also
performed at an individual song level.

There are two major reasons for us to use the actual data for
training of the codebook of the PVQ.
• It is desirable to eliminate the mismatch between training

data and actual data to yield a very compact codebook. In
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the proposed method, the overhead information for the
percussive sounds is extremely small, e.g. only a few bits
per AAC frame.

• There are many different percussive instruments for
different types of music. From a VQ point of view, the
vector space is a fairly large set. However, the percussive
sounds in one individual song will occupy just a very small
subset of the large set. If a large set is desirable, the
corresponding codebook has to be either pre-stored in the
receiver or transmitted before the streaming of music. For
terminals with strict memory constraints, this could pose a
problem.
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To evaluate the performance of the proposed scheme, we have
employed an unsymmetrical window function, which
approximates the drum contour, to isolate all detected
percussions from the music signal and muted all remaining
sounds. The duration of our percussive window is 2048 PCM
samples (ca. 15 short windows), which is ca. 46 ms if the
sampling frequency is 44.1 kHz. The percussive window
function is preliminary and can be improved in future. Our
percussive codebook is selected from the isolated percussive
events. All the isolated percussions are labeled with their cluster
indices so that we can playback one particular cluster or all
clusters at a time for human judgment.

Six pop music samples with a duration of around 30 seconds
from commercial CDs were used in our tests. The number of
clusters was four for all test samples in this test evaluation. The
3rd author, who is also a musician, performed the annotation.
One cluster of the detected percussions was listened at a time.
The ones, which were clearly different from others in that
cluster, were counted as incorrect. The process continued until
all four clusters were gone through. The annotated results are
summarized in Table 1.

0XVLF�H[FHUSW 3HUFXVVLRQV

LQ�WRWDO

,QFRUUHFW &RUUHFW����

Toto 55 6 89

Abba 43 3 93

Aerosmith 72 19 71

Roxette 56 8 86

Sabrina 76 20 74

Michael Jackson 78 4 95

Table 1. Summary of percussion clustering results judged by
a human subject compared to that by the proposed system

The results show that the proposed system works well with
typical music material. The small percentage of error in the
evaluation is due to the following reasons:

• If there are more different kinds of drums used in a
song, it becomes a reality that two different drums are
clustered into the same cluster, thus producing incorrect
results. For some songs four clusters are not sufficient.

• Drumbeats mixed with other sustaining sounds such as
singing voice pose a problem in percussion clustering.
There are still rooms for improvement in this aspect.

• The percussive window function has changed the time-
frequency characteristics of the percussion somewhat.

2�	����+
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An efficient audio coding technique is proposed for coding
percussive sounds in music with promising results. The major
advantages of the proposed scheme are the negligible overhead
information, lower system latency than the network-based re-
transmission and efficient memory management. The next step is
to refine the parameters and to integrate the proposed scheme
into our audio streaming system for packet loss recovery.
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