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I. INTRODUCTION

Signal representation in the Modified Discrete Cosine
Transform (MDCT) domain has emerged as a dominant tool
in high quality audio coding because it combines critical
sampling, reduction of block effect and flexible window
switching. However, its mismatch with the Fourier
transform domain based psychoacoustic model led us to
study the characteristics of MDCT in the time and
frequency domains. We have established the
interconnection between MDCT, SDFT and DFT and
applied the results in audio encoder design.
The purpose of this paper is to provide some new results on
MDCT characteristics in the time and frequency domain
and their impact on audio coding performance. We show
that MDCT is not an orthogonal transform and does not
fulfill Parseval’s theorem, in contrast with orthogonal
transforms. In general, performing MDCT and then IMDCT
with one single frame of time domain samples, the original
time samples cannot be perfectly reconstructed, instead the
reconstructed samples are normally an alias-embeded
version [1]. MDCT itself is a lossy process. This paper
gives the conditions in which MDCT coefficients become
zero with non-zero time domain samples, and the conditions
in which original time domain samples can be perfectly
reconstructed by performing direct and inverse MDCT even
without overlap-add (OA) procedure. Using the relationship
between MDCT and SDFT, the TDAC concept is illustrated
during window switching process. Finally, we have
examined the energy compaction properties of DFT, SDFT,
DCT and MDCT experimentally with real life music
samples.
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II.  PRELIMINARIES

The direct and inverse MDCT are defined as [2][3]:
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DKD =~  is the windowed input signal, 
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input signal of 12  samples. 
N

K  is a window function. We

assume an identical analysis-synthesis time window. The
constraints of perfect reconstruction are [4][5]:
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A sine window is widely used in audio coding because it
offers good stop-band attenuation, provides good
attenuation of the block edge effect and allows perfect
reconstruction. Other optimized windows can also be
applied [4]. The sine window is defined as:
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N
D̂ in (2) contain time domain aliasing [1]:
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The relationship between MDCT and DFT can be
established via Shifted Discrete Fourier Transforms (SDFT,
[6]). The direct and inverse SDFTs are defined as:
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where X  and Y  represent arbitrary time and frequency
domain shifts respectively. SDFT is a generalization of DFT
allowing arbitrary shifts in the position of the samples in the
time and frequency domain with respect to the signal and its
spectrum coordinate system.
We have proven that the MDCT is equivalent to an SDFT
of a modified input signal in (6):
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The right side of (9) is 2/1,2/)1( +16')7 ( )2/1,2/)1( += 1

U
α  of the

signal 
N

D̂  formed from the initial windowed signal 
N

D~

according to (6). The physical interpretation of (6) and (9)
is straightforward. MDCT coefficients can be obtained by
adding the 2/1,2/)1( +1

6')7 coefficients of the initial

windowed signal and the alias.

III. PROPERTIES OF MDCT

MDCT differs somewhat from orthogonal transforms used
for signal coding. The main peculiar properties of MDCT
are:
• MDCT is not an orthogonal transform. Perfect signal

reconstruction can be achieved in the overlap-add (OA)
process. For the overlap-add window of 21 samples,
first N and last N samples of the signal will remain
modified according to (6). One can easily see this from
the fact that performing MDCT and IMDCT of an
arbitrary signal 

N
D~  reconstructs signal 

N
D̂ defined in (6).

• If a signal exhibits local symmetry such that
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its MDCT degenerates to zero: 0=
U

α  for

1,...,0 −= 1U . This property follows from (6). This is
a good example that MDCT does not fulfill Parseval’s
theorem, i.e. the time domain energy is not equal to the
frequency domain energy (see Figure 1).
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MDCT and IMDCT will perfectly reconstruct the
original time domain samples. This property also
follows from (6).

• Nevertheless, on average, MDCT, similar to such
orthogonal transforms as DFT, DCT, DST, etc,
possesses energy compaction capability and acceptable
Fourier spectrum analysis.
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NN
DD ˆ~ =⇒ , i.e. perfect reconstruction can be achieved

without overlap-add procedure.
q.e.d.
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Figure 1. Illustration of signal analysis/synthesis with
MDCT, overlap-add procedure and perfect reconstruction
of time domain samples. (a) a phase/frequency-modulated
time signal; (b)(d)(f) MDCT spectra in different time slots,
indicated as frames 1, 2, 3 in (a); (c)(e)(g) reconstructed
time domain samples (with IMDCT) of frames 1, 2, 3
respectively; (h) the reconstructed time samples after the
overlap-add procedure.

In order to illustrate the special characteristics of the MDCT
and their impact on audio coding in an intuitive way, we
have designed a phase/frequency-modulated time signal in
Figure 1 (a), which has two different frequency elements



with the duration of half of the frame size (= 512 samples).
Dashed lines in Figure 1 (a) illustrate the 50% window
overlap. However, MDCT spectra of different time slots in
Figures 1 (b)(d)(f) are calculated with rectangular windows
for simplicity. The IMDCT time domain samples of frame
1, 2, 3 are shown in Figures 1 (c)(e)(g) respectively. The
reconstructed time domain samples after overlap-add (OA)
procedure is shown in Figure 1 (h). With frame 2 the
condition in (10) holds, and the MDCT coefficients are all
zero! Nevertheless, the time domain samples in frame 2 can
still be perfectly reconstructed after the overlap-add
procedure. With frame 3 the condition (11) holds, and the
original time samples are perfectly reconstructed even
without overlap-add procedure. These are, of course, very
special occurrences, which are rare in real life audio signals.
If the signal is close to the condition in (10), however,
MDCT spectrum will be very unstable in comparison with
DFT spectrum. In this case, using the output of the DFT
based psychoacoustic model to quantise MDCT coefficients
will not be logical. This is an important limitation of
MDCT.
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Figure 2 Comparison of DFT, 2/1,2/)1( +16')7  and MDCT

spectra in different time slots. (a) a frequency-modulated
time signal (solid line) with a moving window, (b)(c)(d)
DFT (dotted lines), 2/1,2/)1( +16')7  (dashed lines) and

MDCT (solid lines) spectra of Frames 1, 2, 3.

Figure 2 shows the fluctuation of MDCT spectrum in
comparison with DFT and 2/1,2/)1( +16')7  spectra. With a

frequency-modulated time signal in Figure 2 (a), the DFT
power spectrum is very stable despite a moving window.
Conversely, the MDCT spectrum is very unstable. The

2/1,2/)1( +16')7  spectrum is in between. This is at least one

evidence that the 2/1,2/)1( +16')7  can be used as a bridge to

connect MDCT and DFT in audio coding applications.
In order to illustrate TDAC concept during the window
switching in MPEG-2 AAC, we define two overlapping
windows with window functions 

N
K  and 

N
J . The conditions

for perfect reconstruction are [8]:
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Using (6) one can easily see one of the important properties
of MDCT: the time domain alias in each half of the window
is independent, which allows adaptive window switching
[8]. The TDAC concept during window switching in
MPEG-2 AAC is illustrated in Figure 3.
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Figure 3. TDAC in the case of window switching. (a) three
types of window shape in MPEG-2 AAC indicated with
W1, W2, W3. (b) time domain alias in the long window,
thick dashed line indicates the time domain alias after
weighting with window function, (c) time domain alias in a
transition window, (d)(e) time domain alias in short
windows.



IV. EXPERIMENTAL RESULTS

Experiments were performed to compare the cumulative
spectra of DFT, DCT, 2/1,2/)1( +1

6')7  and MDCT with a

large number of test samples. We have gained insights into
the energy compaction properties of different transforms
experimentally. With these experiments we have observed
the following:
1) 90% energy is concentrated within 10% of the
normalized frequency scale for most of the test signals for
all transforms concerned. The energy compaction property
of different transforms becomes more unified with
increasing window length.
2) Window shape has an impact on MDCT energy
compaction property. Tests were performed with
rectangular and Hanning windows. In the case of a
rectangular window, DCT has always the best energy
compaction property (see Figure 4), because DCT
corresponds to an even extension of the signal [6].
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Figure 4. Cumulative power spectra of DCT,

2/1,2/)1( +1
6')7 , DFT and MDCT with a fraction of classical

music with rectangular windows. The window size is 256.
The length of the test sequence is 5292000 PCM samples.

V. CONCLUSION AND FUTURE WORK

In this paper we have shown that MDCT exhibits some
peculiar properties which distinguish it from orthogonal
transforms. We then examined its energy compaction
properties experimentally with real-life music samples.

After analyzing MDCT both theoretically and
experimentally, we can conclude that MDCT is a very
useful concept with its Time Domain Alias Cancellation
(TDAC) characteristics. However, its special features
described in this paper and its mismatch with the DFT
domain based psychoacoustic model must be kept in mind
when developing a MDCT based audio codec with its full
potential in terms of coding performance.
In terms of energy compaction property, MDCT does not
have any advantage in comparison to DFT and DCT as
indicated in Figure 4. Apparently, the distinct advantage of
MDCT lies in its critical sampling property, reduction of
block effect and the possibility of adaptive window
switching.
We also believe that the disappointing performance of
wavelet based audio codecs may be caused by the mismatch
between the two fundamental tools of audio coding -- audio
signal representation and the auditory system perceptual
model. Therefore, the interconnection between discrete
wavelet and Fourier transform will be our next focus in the
hope of making some progress; possibly even a
breakthrough in wavelet domain based audio coding
algorithms.
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