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Modified Discrete Cosine Transform (MDCT) has emerged as a
dominant time-frequency decomposition method in high quality
audio compression. The MDCT is a special case of the Lapped
Transforms (LTs) with 50% overlap. This paper establishes the
relationship between the MDCT and Shifted Discrete Fourier
Transform (SDFT). The analysis provides insight into the
following issues: (1) the relationship between MDCT, Shifted
DFT (SDFT) and DFT, (2) characteristics of the MDCT in the
time and frequency domain, (3) the concept of Time Domain
Aliasing Cancellation (TDAC).
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High quality audio compression has been widely used in various
applications, such as VCD, DVD, DAB, HDTV, and Internet
music distribution, etc. High quality audio will play an
increasingly important role in future wireless communication
systems, such as WAP and BLUETOOTH. The objective in these
applications is to achieve a low bit rate in the digital
representation of an input signal with minimum perceived loss of
signal quality. In order to achieve this objective, three basic
coding tools are used: time-frequency decomposition (or
transform), a psychoacoustic model that also assumes time-
frequency decomposition, and a quantizer. The use of transforms
in audio compression is determined by their energy compaction
property.

Among many different transforms, the modified discrete cosine
transform (MDCT) [1][2] has become dominant in practically all
state-of-the-art audio codecs [3]. The MDCT method is a block
transform method, in which the input signal is partitioned into
smaller blocks. Each block is MDCT transformed and the
transform coefficients are quantized prior to code assignment.
The principal reason for using the MDCT rather than other
known transform methods is that, in addition to the effective
decorrelation/energy compaction similar to DCT, MDCT implies
50% time-domain window overlap, thus greatly reducing the
block effects, while maintaining critical sampling. The time
domain alias introduced by the MDCT and inverse MDCT is
independent for each half of the window. This leads to the
realization of adaptive window switching systems [4]. Perfect
reconstruction (PR) of the signal in the overlapped region can be
achieved by the overlap-add (OA) procedure.

In an MDCT-based audio encoder, the quantization of the
MDCT coefficients is the only source of quality degradation. The
objective of the quantization process is to reduce the bit rate
without compromising the perceptual audio quality.

Psychoacoustics and physiology have revealed that the human
auditory system performs frequency analysis in the basilar
membrane [5][6]. Its sensitivity is highly frequency dependent.
In terms of simultaneous masking properties, psychoacoustic
experiments have often been conducted in the Fourier transform
domain [5][6]. Since MDCT coefficients in an audio encoder are
quantized according to a human auditory model, which is based
on signal Fourier analysis implemented by means of DFT [7], a
better understanding of the natural frequency distribution in the
MDCT domain is very important for designing efficient audio
encoders. The purpose of our analysis in this paper is to
introduce SDFT as a bridge between MDCT and DFT.

MDCT was initially introduced in terms of the filterbank
ideology [1][8][9]. This approach, however, does not display
clearly why the MDCT possesses an energy compaction property,
and what its relationship with Fourier analysis is, which is
fundamental in audio coding. We present our analysis as follows:
Section 2 suggests a relationship between the MDCT, SDFT and
the DFT in such a way as to allow us to gain insight into the
frequency distribution properties in the MDCT domain.
Furthermore, the section analyzes the symmetric properties of
MDCT and illustrates the TDAC concept in a very intuitive way
based on our theoretical analysis, Section 3 concludes the paper.
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In order to investigate the frequency characteristics of the
MDCT, we derive in this section the relationship between the
MDCT, SDFT and DFT.

The MDCT of a signal sequence 
N

�  of �� samples is defined as

[1][2]:
( )( )( )∑

−

=




 +++=

12

0

2121
cos

1

N

NNU

1

U1N
DK πα , 1,...,0 −= 1U (1)

where 
N
K  is a window function. We assume an identical analysis-

synthesis time window. The constraints of perfect reconstruction
are [3][9]:

N1N
KK −−= 12 (2)

122 =+ +1NN
�� (3)

A sine window is widely used in audio coding because it offers
good stop-band attenuation, provides good attenuation of the
block edge effect and allows perfect reconstruction. Other
optimized windows can be applied as well [3]. The sine window
is defined as:
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In the following we will prove that the MDCT is equivalent to a
Shifted Discrete Fourier Transform (SDFT) [10][11] of a
modified input signal. SDFT is a generalization of DFT that
allows an arbitrary shift in position of the samples in the time and
frequency domain with respect to the signal and its spectrum
coordinate system.

The direct and inverse Shifted Fourier transforms are defined as
[10][11]:
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where u and v represent arbitrary time and frequency domain
shifts respectively.

We will now prove that the MDCT of a windowed signal 
N
D
~  of

2N samples is a �����X�Y� of an alias-embedded signal 
N

�̂  with

( ) 21,21 =+= Y1X .
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Denote 
NNN
DKD =~  as the windowed input signal. Then the

MDCT coefficients are:

( )[ ]∑
−

=

=
12

0

,,cos~
1

N

NU
1UND πβα , (8)

Represent the cosine term via complex exponents and split the
summation in (8) into four parts:
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Replace the summation index k in the second and fourth terms of
(9) with �� −−1  and �� −−13  respectively. This results in:
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or, described in another way:
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Eq. (11) can be further simplified by substitution,
( )[ ] 1212exp −=+− UL π , (12)
( )[ ] 1214exp =+− UL π (13)

Introduce time domain aliasing:
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and finally obtain:
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which is ������1���������� of the signal 
N

D̂  formed from the initial
windowed signal 

N
D
~  according to (14). For real-valued signals

2/1,2/)1( +1����  has the following property [11]:
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where * stands for the complex conjugate. Since 
N

�̂  fulfills (14),

(16) holds for 1,...,0 −= �� . For 12,..., −= ���  the
generalized cyclicity property of the SDFT [11] can be
employed:

N1N
�� ˆˆ

2 −=+ (18)

Therefore (16) can be written as
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(19) is true when 
N

�̂ fulfills (14).

This proves that the right side of (15) is real-valued if 
N

�̂ fulfills

(14), which is always the case for real-valued 
N

�~ .

Physical interpretation of (14) is straightforward. MDCT
coefficients can be obtained by adding the SDFT coefficients of
the initial windowed signal and the alias. In other words, we can
rewrite (15) as:
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With reference to (14) and Figure 1(c), the alias is added to the
original signal in such a way that the first half of the window 1
(the signal portion between points A and B) is mirrored in the
time domain and then inverted before being subsequently added
to the original signal. The second half of the window 1 (signal
portion between points B and C) is also mirrored in the time
domain and added to the original signal.

The �����1��������� can be expressed by means of the
conventional DFT as:
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To the right side of (21), the first exponential function
corresponds to a modulation of 

N
D̂ that result in a signal spectrum

shift in frequency domain by ½ of the frequency-sampling
interval. The second exponential function corresponds to the
conventional DFT. The third exponential function modulates the
signal spectrum that is equivalent to a signal shift by (N+1)/2 of
the sampling interval in the time domain [11]. Therefore,
�����1��������� is the conventional DFT of this signal shifted in



time domain by (N+1)/2 of the sampling interval and evaluated
with the shift of ½ of the frequency-sampling interval.

MDCT transform coefficients exhibit symmetric properties:
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To show this, replace in (1) U  with 12 −− U1  to obtain
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Rearrange terms:
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Apparently, the MDCT coefficients are odd symmetric, only if N
is even, which is often true in audio coding applications.
However, they are even symmetric if N is odd. This new
conclusion is more general in comparison with [12]. Using this
newly derived property we can now easily derive the Inverse
MDCT (IMDCT). From (6) it follows that

( )[ ]2/,,2exp
2

1
ˆ

12

0

�
��
�

�
1

U

UN
πβα −= ∑

−

=

(27)

Divide the summation into two parts:
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Replace U  with 12 −− U1  and change the summation order in the
second term:
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Rearrange terms in the last exponent:
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Finally add the summations together:
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This proves that IMDCT is equivalent to the ������1���������.

From (33) we can see that, in comparison with conventional
orthogonal transforms, MDCT has a special property: the input

signal cannot be perfectly reconstructed from the MDCT
coefficients even without quantization. MDCT itself is a lossy
process (therefore not an orthogonal transform). That is, the
imaginary coefficients of the �����1��������� are lost in the MDCT
transform. However, the lost information can be recovered using
the redundancy of the 50% overlap of neighboring frames to gain
perfect reconstruction. Applying MDCT and IMDCT converts
the input signal into one that contains certain twofold symmetric
alias (see (14) and Figure 1(c)). The introduced alias will be
cancelled in the overlap-add process (see Figure 1).
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Figure 1. Illustration of the MDCT, overlap-add (OA)
procedure and the concept of the Time Domain alias
cancellation (TDAC). (a) An artificial time signal, dashed
lines indicating the 50% overlapped windows; (b)
MDCT coefficients of the signal in Window 1; (c)
IMDCT coefficients of the signal in (b), the alias is
shown by markers on the line; (d) The MDCT
coefficients of the signal in Window 2; (e) IMDCT
coefficients of the signal in (d), the alias is shown by
markers on the line; (f) The reconstructed time domain
signal after the overlap-add (OA) procedure. The original
signal in the overlapped part (between points B and C) is
perfectly reconstructed.

Based on our theoretical analysis, we have designed an artificial
time domain signal to illustrate the Time Domain Aliasing
Cancellation (TDAC) concept in a very intuitive way. The



artificial signal of 54 samples is shown in Figure 1(a). The
MDCT coefficients of the signal in Window 1 are shown in
Figure 1(b). Obviously the coefficients are subsampled by 50%
in MDCT (from 2N time domain samples to N independent
frequency domain coefficients), and the alias is introduced as
well. The IMDCT coefficients of the signal in Figure 1(b) are
illustrated in Figure 1(c). This step introduces redundancy (from
N frequency domain coefficients to 2N time domain samples).
The MDCT coefficients of the signal in Window 2 are presented
in Figure 1(d). The corresponding IMDCT time domain signal is
shown in Figure 1(e). If the overlap-add procedure is performed
with Figure 1(c) and (e), perfect reconstruction (PR) of the
original signal in the overlapped part (between points B and C)
can be achieved.

It is clear that one cannot achieve perfect reconstruction (PR) for
the first half of the first window and the second half of the last
window as indicated in Figure 1.
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The analysis presented in this paper demonstrates the
interconnection between MDCT, SDFT and DFT, and vividly
explains the Time Domain Alias Cancellation (TDAC) concept
of MDCT. Essentially MDCT is the DFT of a signal modified in
a certain way.

The presented analysis provides explicit relationships between
the DFT coefficients and the MDCT coefficients for the same
input samples. Therefore, many existing useful results in the DFT
domain can be mapped to the MDCT domain.
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